A right cylinder has a radius of 5 and a height of 9. What is its surface area? A. 457 units2 B. 1407 units2 C. 907 units? D. 700 units2​

Answers

Answer 1

Answer: B

The surface area of the right cylinder is 140π cubic units or 439.60 cubic units.

Step-by-step explanation:

We have formula to find the surface area of a right cylinder.

Surface area = 2πr(h + r)

Given: r = 5 and h = 9,

Now plug in the value of r and h in the above formula, we get

Surface area = 2π.5 (9 + 5)

= 10π(14)

Surface area = 140π

The value of π = 3.14, when we plug in the value of π, we get

The surface area = 140 × 3.14

= 439.60 cubic units.

Therefore, the surface area of the right cylinder is 140π cubic units or 439.60 cubic units.

Hope this helped!!!


Related Questions

Population 1,2,4,5,8 · Draw all possible sample of size 2 W.O.R · Sampling distribution of Proportion of even No. · Verify the results

Answers

Question:

A population consists  1, 2, 4, 5, 8. Draw all possible samples of size 2  without replacement from this population.

Verify that the sample mean is an unbiased estimate of the population mean.  

Answer:

[tex]Samples: \{(1,2),(1,4),(1,5),(1,8),(2,4),(2,5),(2,8),(4,5),(4,8),(5,8)\}[/tex]

[tex]\hat p = \frac{3}{5}[/tex] --- proportion of evens

The sample mean is an unbiased estimate of the population mean.

Step-by-step explanation:

Given

[tex]Numbers: 1, 2, 4, 5, 8[/tex]

Solving (a): All possible samples of 2 (W.O.R)

W.O.R means without replacement

So, we have:

[tex]Samples: \{(1,2),(1,4),(1,5),(1,8),(2,4),(2,5),(2,8),(4,5),(4,8),(5,8)\}[/tex]

Solving (b): The sampling distribution of the proportion of even numbers

This is calculated as:

[tex]\hat p = \frac{n(Even)}{Total}[/tex]

The even samples are:

[tex]Even = \{2,4,8\}[/tex]

[tex]n(Even) = 3[/tex]

So, we have:

[tex]\hat p = \frac{3}{5}[/tex]

Solving (c): To verify

[tex]Samples: \{(1,2),(1,4),(1,5),(1,8),(2,4),(2,5),(2,8),(4,5),(4,8),(5,8)\}[/tex]

Calculate the mean of each samples

[tex]Sample\ means = \{1.5,2.5,3,4.5,3,3.5,5,4.5,6,6.5\}[/tex]

Calculate the mean of the sample means

[tex]\bar x = \frac{1.5 + 2.5 +3 + 4.5 + 4 + 3.5 + 5 + 4.5 + 6 + 6.5}{10}[/tex]

[tex]\bar x = \frac{40}{10}[/tex]

[tex]\bar x = 4[/tex]

Calculate the population mean:

[tex]Numbers: 1, 2, 4, 5, 8[/tex]

[tex]\mu = \frac{1 +2+4+5+8}{5}[/tex]

[tex]\mu = \frac{20}{5}[/tex]

[tex]\mu = 4[/tex]

[tex]\bar x = \mu = 4[/tex]

This implies that [tex]\bar x[/tex] is an unbiased estimate of the [tex]\mu[/tex]

Find the zeros of the following quadratic functions.
3) x2 + 5x + 6 = 0

Answers

the zeros are x= -6 & x= 1

Bases are 6 and 10 the height is 4 whats the area of the trapszoid

Answers

Answer:

here,hope this helps : )

Step-by-step explanation:

Answer: A= 32

a (Base) 6

b (Base) 10

h (Height) 4

Step-by-step explanation: A=a+b

2h=6+10

2·4=32    I really hoped this helped

A circle is inscribed in an isosceles trapezoid with bases of 8 cm and 2 cm. Find the probability that a randomly selected point inside the trapezoid lies on the circle

Answers

Given that a circle is inscribed in an isosceles trapezoid with bases of 8 cm and 2 cm. We need to find the probability that a randomly selected point inside the trapezoid lies on the circle.

The isosceles trapezoid is shown below: [asy] draw((0,0)--(8,0)--(3,5)--(1,5)--cycle); draw((1,5)--(1,0)); draw((3,5)--(3,0)); draw((0,0)--(1,5)); draw((8,0)--(3,5)); draw(circle((2.88,2.38),2.38)); label("$8$",(4,0),S); label("$2$",(1.5,5),N); [/asy]Let ABCD be the isosceles trapezoid,

where AB = 8 cm, DC = 2 cm, and AD = BC.

Since the circle is inscribed in the trapezoid, we can use the following formula:2s = AB + DC = 8 + 2 = 10 cm

Where s is the semi-perimeter of the trapezoid. Also, let O be the center of the circle. We can draw lines OA, OB, OC, and OD as shown below: [asy] draw((0,0)--(8,0)--(3,5)--(1,5)--cycle); draw((1,5)--(1,0)); draw((3,5)--(3,0)); draw((0,0)--(1,5)); draw((8,0)--(3,5)); draw(circle((2.88,2.38),2.38)); label("$A$",(0,0),SW); label("$B$",(8,0),SE); label("$C$",(3,5),N); label("$D$",(1,5),N); label("$O$",(2.88,2.38),N); label("$8$",(4,0),S); label("$2$",(1.5,5),N); draw((0,0)--(2.88,2.38)--(8,0)--cycle); label("$s$",(3,0),S); label("$s$",(1.44,2.38),E); [/asy]Since O is the center of the circle, we have:OA = OB = OC = OD = rwhere r is the radius of the circle.

Also, we have:s = OA + OB + AB/2 + DC/2s = 2r + 2s/2s = r + 5 cmWe can solve for r:r + 5 cm = 10 cmr = 5 cmNow that we know the radius of the circle, we can find the area of the trapezoid and the area of the circle.

Then, we can find the probability that a randomly selected point inside the trapezoid lies on the circle as follows:Area of trapezoid = (AB + DC)/2 × height= (8 + 2)/2 × 5= 25 cm²Area of circle = πr²= π(5)²= 25π cm²Therefore, the probability that a randomly selected point inside the trapezoid lies on the circle is:

Area of circle/Area of trapezoid= 25π/25= π/1= π

To know more about probability, visit:

https://brainly.com/question/31828911

#SPJ11

The probability that a randomly selected point inside the trapezoid lies on the circle is 0.399 or 39.9%. Therefore, option (A) is the correct answer.

The circle is inscribed in an isosceles trapezoid with bases of 8 cm and 2 cm.

Inscribed Circle of an Isosceles Trapezoid

Therefore, the length of the parallel sides (AB and CD) is equal.

Let the length of the parallel sides be ‘a’. Then, OB = OD = r (let)

It is also given that the lengths of the parallel sides of the trapezoid are 8 cm and 2 cm.

Then, its height is given by:

h = AB - CD / 2 = (8 - 2) / 2 = 3 cm

Therefore, the length of the base BC of the right-angled triangle is equal to ‘3’.

Then, the length of the other side (AC) can be given as:

AC = sqrt((AB - BC)² + h²) = sqrt((8 - 3)² + 3²) = sqrt(34) cm

The area of the trapezoid can be calculated as follows:

Area of the trapezoid = 1/2 (sum of the parallel sides) x (height)A = 1/2 (8 + 2) x 3A = 15 sq. cm.

The area of the circle can be given by:

Area of the circle = πr²πr² = A / 2πr² = 15 / (2 x π)

Therefore, r² = 2.39

r = sqrt(2.39) sq. cm.

Now, the probability that a randomly selected point inside the trapezoid lies on the circle can be calculated by dividing the area of the circle by the area of the trapezoid:

P (point inside the trapezoid lies on the circle) = Area of the circle / Area of the trapezoid

P = πr² / 15

P = π (2.39) / 15

P = 0.399 or 39.9%

The probability that a randomly selected point inside the trapezoid lies on the circle is 0.399 or 39.9%.

Therefore, option (A) is the correct answer.

To know more about probability, visit:

https://brainly.com/question/31828911

#SPJ11

A type of origami paper comes in 15 cm by 15 cm
square sheets. Hilary used two sheets to make the
origami dog. What is the total area of the origami
paper that Hilary used to make the dog?

Answers

Answer:

150 cm squared

Step-by-step explanation:

I guess that's the answer if I'm wrong you can tell me right away so that I can try another method thank you.

Find the value of X for which the following fraction is undefined
2x²+x-15
________
2/3x²-6

Answers

Answer: ±√2

Step-by-step explanation: A fraction is undefined when its denominator is =0 or undefined. so we need to get 2/3x²-6=0 or undefined. so we can also do 3x^2-6=0. Solving yields ±√2!

Greta bought a collar for her dog. The
original price was $12 but she had a
coupon for 10% off. How much money
did she save?

Answers

Answer:

She saved 1.20

Step-by-step explanation:

Purchase Price:

$12

Discount:

(12 x 10)/100 = $1.20

Final Price:

12 - 1.20 = $10.80

help ASAP Ill give you brainliest

Answers

Answer:

none of these

Step-by-step explanation:

There are 3 boys walking

There are a total of 20 people

3/20 = 0.15

That is 15 percent, therefore none of these answers.

Step-by-step explanation:

any has at least one mode

31 PIONTS GIVING BRAINIEST AWNSER Any tips on how to get a grade up ???

Answers

Answer:

 Forgot picture?

Step-by-step explanation:

Answer:

You can get your grade up by studying, getting a tutor, paying attention in class, taking good notes, asking questions, and cheating (i don't recommend this one :/)

ABM Services paid a $4.15 annual dividend on a day it closed at a price of $54 per share. What
was the yield?

Answers

Answer:

Yield per share = 7.68% (Approx.)

Step-by-step explanation:

Given:

Dividend paid = $4.15

Price per dividend = $54

Find:

Yield per share

Computation:

Yield per share = [Dividend paid / Price per dividend]100

Yield per share = [4.15 / 54]100

Yield per share = [0.0768]100

Yield per share = 7.68% (Approx.)

A seventh-grade class raised $380 during a candy sale. They deposited the money in a savings account for 6 months. If the bank pays 5.3% simple interest per year, how much money will be in the account after 6 months?

Answers

Answer: You want to calculate the interest on $380 at 5.3% interest per year after .5 year(s).

The formula we'll use for this is the simple interest formula, or:

Where:

P is the principal amount, $380.00.

r is the interest rate, 5.3% per year, or in decimal form, 5.3/100=0.053.

t is the time involved, 0.5....year(s) time periods.

So, t is 0.5....year time periods.

To find the simple interest, we multiply 380 × 0.053 × 0.5 to get your answer.

Step-by-step explanation:

What is -a⁻² if a = -5?

Answers

Answer:

25

Step-by-step explanation:

First, plug -5 in for a, -(-5)^2. We treat the negative on the outside of the paranthese as a -1 so we do -1 times -5 and we get 5. Then we square 5 and get 25.

0 Let x₁ = and x3 = B x2 = Write H Span{x1, x2, X3}. = - Use the Gram-Schmidt process to find an orthogonal basis for H. You do not need to normalize your vectors, but give exact answers. S 100.0000 V3

Answers

Main answer: An orthogonal basis for the given span H is {x1, x2-x1, x3 - (x1 + x2 - x1)} which simplifies to {x1, x2-x1, x3-x2}.

Supporting explanation: Given, x₁ = 0, x₂ = 1, x₃ = √3The span of H is the set of all linear combinations of x1, x2 and x3.So, we have to find an orthogonal basis for H using the Gram-Schmidt process. Let's start with the first vector x1 = [0, 0, 0]The second vector x2 is the projection of x2 onto the subspace perpendicular to x1. x2 is already perpendicular to x1 so x2-x1 = x2. So, the second vector is x2 = [0, 1, 0].The third vector x3 is the projection of x3 onto the subspace perpendicular to x1 and x2. x3 is not perpendicular to x1 and x2, so we subtract the projections of x3 onto x1 and x2 from x3. Projection of x3 onto x1:projx₁(x₃) = x₁ [(x₁ . x₃)/(x₁ . x₁)] = [0, 0, 0]Projection of x3 onto x2:projx₂(x₃) = x₂ [(x₂ . x₃)/(x₂ . x₂)] = [0, √3/3, 0]Therefore, x3 - projx₁(x₃) - projx₂(x₃) = [0, √3/3, √3]So, the orthogonal basis for H is {x1, x2-x1, x3 - (x1 + x2 - x1)} which simplifies to {x1, x2-x1, x3-x2}.

Know more about orthogonal here:

https://brainly.com/question/2292926

#SPJ11

How do you turn 5/2 into 10/4?

Answers

That’s easy. To turn 5/2 into 10/4 you multiply by 2. :D Hope this helps!

Answer:

YOU DO IT X 2

Step-by-step explanation:

Information from a poll of registered voters in a city to assess voter support for a new school tax was the basis for the following statements.

The poll showed 51% of the respondents in this city's school district are in favor of the tax. The approval rating rises to 58% for those with children in public schools. It falls to 45% for those with no children in public schools. The older the respondent, the less favorable the view of the proposed tax: 38% of those over age 56 said they would vote for the tax compared with 73% of 18- to 25-year-olds.

Suppose that a registered voter from this city is selected at random, and define the following events.

F = event that the selected individual favors the school tax
C = event that the selected individual has children in the public schools
O = event that the selected individual is over 56 years old
Y = event that the selected individual is 18–25 years old

Use the given information to estimate the values of the following probabilities. (1) P(F) (ii) P(FIC) (iii) PCFCS) (iv) P(FIO)

Answers

The probability that the selected individual has children in public schools AND favors the school tax is 0.32

The probability that the selected individual favors the school tax AND has children in public schools is 0.32.

The probability that the selected individual favors the school tax AND does NOT have children in public schools is 0.2.

The probability that the selected individual favors the school tax AND is over 56 years old is 0.15.

The probability that the selected individual favors the school tax AND is 18-25 years old is 0.45.

Based on the given information, the probability of event F (the selected individual favors the school tax) is 0.54, as 54% of the respondents are in favor of the tax. The probability of event C (the selected individual has children in public schools) is 0.59, as the approval rating rises to 59% for those with children in public schools. The probability of event O (the selected individual is over 56 years old) is 0.37, as only 37% of those over age 56 said they would vote for the tax. The probability of event Y (the selected individual is 18-25 years old) is 0.71, as 71% of 18- to 25-year-olds said they would vote for the tax.

Using these probabilities, we can estimate the values of the following probabilities:

(1) P(CF) is the probability that the selected individual has children in public schools AND favors the school tax. Based on the given information, we can multiply the probabilities of events C and F: P(CF) = 0.59 * 0.54 = 0.318, or approximately 0.32.

(ii) P(FIC) is the probability that the selected individual favors the school tax AND has children in public schools. This is the same as P(CF), so P(FIC) = 0.32.

(iii) P(FIN) is the probability that the selected individual favors the school tax AND does NOT have children in public schools. To calculate this, we can use the fact that the approval rating falls to 44% for those with no children in public schools. So, P(FIN) = 0.44 * (1 - 0.59) = 0.18, or approximately 0.2.

(iv) P(FTO) is the probability that the selected individual favors the school tax AND is over 56 years old. To calculate this, we can use the fact that the approval rating for those over 56 years old is only 37%. So, P(FTO) = 0.37 * (1 - 0.59) = 0.1523, or approximately 0.15.

(v) P(FY) is the probability that the selected individual favors the school tax AND is 18-25 years old. To calculate this, we can use the fact that the approval rating for those 18-25 years old is 71%. So, P(FY) = 0.71 * (1 - 0.37) = 0.4477, or approximately 0.45.

Know more about probability here,

brainly.com/question/31828911

#SPJ4

Tell whether the angles are complementary or supplementary. Then find the value of x.​

Answers

Answer:  Complementary     x=15

Step-by-step explanation:

Complementary angles add up to 90°, supplementary angles add up to 180°.

We know they add up to 90 so...

3x+45=90

3x=45

x=15

Which expression is equivalent to the given expression?

Answers

Step-by-step explanation:

D. In 2 _ In

maaf kalo salah

Rewrite the expression using a DIVISION SYMBOL: "The quotient of m and 7."

Answers

Answer:

m ÷ 7

Step-by-step explanation:

"Quotient" means you're dividing, so this just means you're dividing m by 7.

Suppose that the NY state total population remains relatively fixed 20Mil, with 8.4Mil of the people living in the city and remaining are in the suburbs. Each year 3.5% of the people living in the city move to the suburbs, and 1.7% of the suburban population moves to the city. What is the long-term distribution of population, after 100 years (what is the population in the city and in the suburbs)? Plot population of city and suburbs over period of 100 years. Submit, 1) answer(s), 2) Matlab code, 3) graph(s)

Answers

After 100 years, the long-term distribution of population in the city and suburbs of New York state can be calculated based on the given migration rates. The population in the city and suburbs will stabilize at approximately 3.96 million and 16.04 million, respectively. The population distribution can be visualized using a graph that shows the population of the city and suburbs over the 100-year period.

To calculate the long-term population distribution, we can use the concept of equilibrium. Let C represent the population in the city and S represent the population in the suburbs. The equilibrium equations can be written as follows:

C = C - 0.035C + 0.017S

S = S + 0.035C - 0.017S

Simplifying these equations, we have:

C = 0.965C + 0.017S

S = 0.035C + 0.983S

Solving these equations simultaneously, we find that C stabilizes at approximately 3.96 million and S stabilizes at approximately 16.04 million.

To plot the population of the city and suburbs over the 100-year period, you can use the following MATLAB code:

Copy code

years = 0:100;

C = zeros(1, 101);

S = zeros(1, 101);

C(1) = 8.4;

S(1) = 20 - C(1);

for i = 2:101

   C(i) = 0.965*C(i-1) + 0.017*S(i-1);

   S(i) = 0.035*C(i-1) + 0.983*S(i-1);

end

plot(years, C, 'b', 'LineWidth', 2);

hold on;

plot(years, S, 'r', 'LineWidth', 2);

xlabel('Years');

ylabel('Population');

legend('City', 'Suburbs');

title('Population of City and Suburbs Over 100 Years');

This MATLAB code calculates and plots the population of the city (in blue) and suburbs (in red) over the 100-year period.

Learn more about population distribution here:

https://brainly.com/question/31646256

#SPJ11

Point (2.-3) on glx) is transformed by -g[4(x+2)]. What is the new point? Show your work

Answers

After considering the given data we conclude that the new point generated is (2,3), under the condition that g(x) is transformed by [tex]-g[4(x+2)][/tex].

To evaluate the new point after the transformation of point (2,-3) by -g[4(x+2)], we can stage x=2 and g(x)=-3 into the expression [tex]-g[4(x+2)][/tex]and apply  simplification to get the new y-coordinate. Then, we can combine the new x-coordinate x=2 with the new y-coordinate to get the new point.
Stage x=2 and g(x)=-3 into [tex]-g[4(x+2)]:[/tex]
[tex]-g[4(2+2)] = -g = -(-3) = 3[/tex]
The new y-coordinate is 3.
The new point is (2,3).
Hence, the new point after the transformation of point (2,-3) by [tex]-g[4(x+2)][/tex] is (2,3).
To learn more about transformation
https://brainly.com/question/29788009
#SPJ4

If S=4 [tex]\pi[/tex] [tex]r^{2}[/tex] the value of S When R= 10[tex]\frac{1}{2}[/tex]

Answers

The Answer is 1385.

HELP



4(x-2+y)=???????

Answers

Answer:

4+4−8

Step-by-step explanation:

QUICK! Giving brainliest to correct answer

Answers

Answer:

Dominos is the better deal.

In this situation dominos is the better deal.

Given the definitions of f(x) and g(x) below, find the value of (gof)(1).
f(x) = 2x² – 2x – 4
g(x) = -5x + 14

Answers

Answer:

[tex](g*f)(x) = 34[/tex]

Step-by-step explanation:

For sake of clarity, [tex](g * f)(x) = g(f(x))[/tex]

First, find [tex]f(1)[/tex]

[tex]f(1) = 2(1)^2 - 2(1) - 4\\f(1) = 2-2-4 \\f(1)=-4[/tex]

Then, take what you got for [tex]f(1)[/tex] and plug that into [tex]g(x)[/tex].  In this case, [tex]f(1) = -4[/tex]

[tex]g(-4) = -5(-4) + 14\\g(-4)= 20 + 14\\g(-4) = 34[/tex]

Please make sure to mark brainliest if this satisfies your

Sammy counts the number of people in one section of the school auditorium. He counts 18 female students, 16 male students, and 6 teachers. There are 720 people in the auditorium. Consider the probability of selecting one person at random from the auditorium

Answers

Correct Question:

He counts 18 female students, 16 male students, and 6 teachers. There are

720 people in the auditorium. Consider the probability of selecting one person

at random from the auditorium.

Which of these statements are true?

Choose all that apply.

A:  The probability of selecting a teacher is 6%.

B : The probability of selecting a student is 85%.

C : The probability of selecting a male student is 32%.

D : The probability of selecting a female student is 45%.

Step-by-step explanation:

Option B  and D are correct because

The total number of people in one cross section = 18 + 16 + 6 = 40.

A = The probability of selecting a teacher is = (6/40)x100 = 15 % not equal to 6 %

B = The probability of selecting a male student is = (34/40)x100 = 85%

C = The probability of selecting a male student is = (16/40)x100 = 40 % not equal to 32 %

D : The probability of selecting a female student is = (18/40)x100= 45%

Isaiah is decorating the outside of a box in the shape of a triangular prism. The figure
below shows a net for the box.
What is the surface area of the box, in square meters, that
Isaiah decorates

Answers

Answer:

389.19 m²

Step-by-step explanation:

The surface area of the box = area of the two equal triangles + area of the 3 different rectangles

✔️Area of the two equal triangles:

Area = 2(½*base*height)

base = 7 m

height = 8 m

Area of the two triangles = 2(½*7*8) = 56 m²

✔️Area of rectangle 1:

Area = Length*Width

L = 13 m

W = 7 m

Area of rectangle 1 = 13*7 = 91 m²

✔️Area of rectangle 2:

L = 13 m

W = 8 m

Area of rectangle 2 = 13*8 = 104 m²

✔️Area of rectangle 3:

L = 13 m

W = 10.63 m

Area of rectangle 3 = 13*10.63 = 138.19 m²

✅Surface Area of the box = 56 + 91 + 104 + 138.19 = 389.19 m²

Which point on the graph represents the y-intercept?


Answers

W . The point was placed on the Y-intercept

which dashed line is an asymptote for the graph?

Answers

Answer:

the graph has two vertical asymptotes, line q intersects the line at -8 and is the more important one.

Step-by-step explanation:

This is visible based off of the picture.

Pip was thinking of a number. Pip halves the number and gets an answer of 87.2. Form an
equation with x from the information.

Answers

X/2= 87.2

to find X:

87.2 X 2= 174.4

therefore X is 174.4

Brayden invests money in an account paying a simple interest of 3.3% per year. If he invests $30 and no money will be added or removed from the investment, how much will he have in one year, in dollars and cents?

Answers

Answer:

$30.99

Step-by-step explanation:

The formula for simple interest is I = PRT where I = interest earned, P = principal amount borrowed/deposited, R = rate as a decimal, and T = time in years.

I = (30)(0.033)(1)

I = 0.99

Then add that to the amount deposited ($30) and you're done.

30 + 0.99 = $30.99

Please let me know if you have questions.

The answer is $29.01

Other Questions
Suppose that the full model is y_i = o + x_i1 + x_i2 + i for i=1,2,..., n, where x_i1 and x_i2 have been coded so that S_11 = S_22 = 1. We will also consider fitting a subset model, say y_i = o + _ix_i1 + i a. Let _1* be the least-squares estimate of _1 from the full model. Show that Var (_1*) = /(1-r^2_12)where r12 is the correlation between x_1 and x_2. b. Let be the least-squares estimate of from the subset model. Show that Var() = . Is estimated more precisely from the subset model or from the full model? Explain. 1. Are Job descriptions really necessary? What would happen if a company decided not to use job descriptions at all? 2. How would you design a performance appraisal system based on behaviors, outcomes or both? 3. There are several ways to conduct a selection interview. Differentiate between structured interview and unstructured interview? 4. Explain how an employer can use HR practices to manage employee turnover and ensure stable performance? Question 1 (Financial Maths) (6 marks) (a) Bob wants to open a new fastfood shop. He estimates he needs to spend at least $100,000 on renovation and buying commercial kitchen appliances. The average r Which of the following is one way that land animals tend to lose water to their environment?active transportosmosisevaporationtranspiration Think of your final year of High school and estimate the amountof time you spent being evaluated. In your opinion, was there anexcessive amount of evaluation or not? (2m)How would you evaluate the Fed the partial fraction decomposition of 1/(2x+1)(x-8). dod policy describes ""information superiority"" as ______________. Nae Maria Zaragoza 11 Practice Anment You took independent random samples of 20 students at City College and 25 sett SF State. You cach student how many sodas they drank over the course of you. The complemenn at City College was the sample standard deviation was 10. Al Suate the sample en was 90 and the sample standard deviation was is Use script of e for City College and subscriptors for State 1. Calculate a point estimate of the difference between the two population man = 20 n = 25 XI = 80 X = 90 N-12= XT-X2 = 80-90=-10 61 = 10 SI = 15 2. Even if an intervention has been supported by exceptionally strong research evidence, practitioners need to evaluate whether that intervention has been the best choice for their particular client.a. trueb. false Find the function value, if possible. g(t) = 7t- 6t+ 4 Given: AB CD and AC bisects BD. Prove: BD bisects AC. Step Statement Reason 1 AB CD Given AC bisects BD 2 DE EB A segment bisector divides a segment into two congruent segments 3 In an experiments on preparedness, bedford and anger found that it is easier for pigeons to learn to avoid shock _____. if we use no forwarding, what fraction of cycles are we stalling due to data hazards? Napoleon is definitely no longer one of the animals. He is clearly setting himself apart and distinguishing himself as superior. He even changes the way heis addressed very emotive titles: protector... / father / friend...Are these titles true & fitting? Why or why not?(Animal Farm Chapter 8) 1 Product Development at Dell Computer Corporation (Due at the beginning of 6th session) Read the case and answer the questions below. Each group should turn in a precise write-up answering the following questions. 1. What are the strengths and weaknesses of each of the options available to Mark Holliday? 2. Using data in case exhibit 8 and making appropriate assumptions, perform a detailed comparison of the three options for their net profit parallel path) approaches? Holliday consider in making his decision? 3. What are the organizational challenges associated with the flexible development (overdesign and 4. What would you recommend as the proper course of action? What other factors should Mark 5,. Suppose there is uncertainty associated with the cost of overdesigning the product. Dell believes that there is a 50% chance that when the product is overdesigned, it will not suffer any loss in margins due to the overdesign. However, there is also a 50% chance that the loss of margin is as high as 4%. Dell can conduct an advanced technical assessment and survey its prospective consumers to determine which of the cases is more likely. The technical assessment is expensive and will cost $1mn. Should Dell conduct the technical assessment? How will it impact Dell's development strategy? As an auditor for the CPA firm of Hinkson and Calvert, you encounter the following situations in auditing different clients. 1. Cheyenne Corp. is a closely held corporation whose stock is not publicly traded. On December 5, the corporation acquired land by issuing 3,000 shares of its $20 par value common stock. The owners' asking price for the land was $132,500, and the fair value of the land was $117,000. 2. Sheridan Company is a publicly held corporation whose common stock is traded on the securities markets. On June 1, it acquired land by issuing 20,500 shares of its $10 par value stock. At the time of the exchange, the land was advertised for sale at $273,500. The stock was selling at $11 per share. Prepare the journal entries for each of the situations above. (Credit account titles are automatically indented when amount is entered. Do not indent manually. If no entry is required, select "No Entry" for the account titles and enter O for the amounts.) No. Dates Account Titles and Explanation Credit Debit For the transistor circuit shown below, what is the value of the emitter current? Vcc = +20 V Rc 2.4 Vi. RB 510 10 F +|+ C IB B VBE E - + + 10 F HE C VCE RE 1,5 + Vo B = = 100 Built Rite Corp. is evaluating an extra dividend versus a share repurchase. In either case, $7,500 would be spent. Current earnings are $1.24 per share, and the stock currently sells for $32 per share. There are 5,000 shares outstanding. Ignore taxes and other imperfections. You own one share of stock in this company. If the company issues the dividend, your total investment will be worth (per share) as compared to (per share) if the company opts for a share repurchase. Ignore market imperfection (Ignore taxes, transaction costs, and commission fees). Which of the four learning styles is associated with learningthrough the visual presentation of material in a writtenformat.a.Visual/Graphicb.Tactile/Kinestheticc.Auditory/Verbald.None of th A Carnot engine operates between a hot reservoir at 370.0 K and a cold reservoir at 293.0 K. If it absorbs 455.0 J of heat per cycle at the hot reservoir, how much work per cycle does it deliver? If the same engine, working in reverse, functions as a refrigerator between the same two reservoirs, how much work per cycle must be supplied to remove 910.0 J of heat from the cold reservoir?