Two point charges of values +3.4 ?C and +6.6 ?C, respectively, are separated by 0.20 m. What is the potential energy of this 2?charge system? (ke = 8.99 109 N?m2/C2)
Electric Potential Energy

Electric potential energy of a system of charges is the work done in bringing the charges from infinite distances to their respective positions in the system. Total electric potential energy of a system is the sum of potential energies of each pair of charges of the system.

Answers

Answer 1

Potential energy of the 2-charge system: According to the question, we have two point charges of values +3.4 µC and +6.6 µC separated by 0.20 m. The potential energy of the two-point charge system is 820.41 J.

The formula for calculating the potential energy of the two-point charge system is given by;

U = (kq1q2)/d,

Where; U = potential energy of the system q1 = value of the first point charge

q2 = value of the second point charge,

k = Coulomb's constant = 8.99 × 10^9 Nm^2/C^2

d = separation distance between the two charges

Plugging in the values, we get;

U = [(8.99 × 10^9 Nm^2/C^2)(3.4 µC)(6.6 µC)]/(0.20 m)

U = 820.41 J (Joules)

to know more about electric potential energy visit:

https://brainly.com/question/31051415

#SPJ11


Related Questions

You are standing on the roadside watching a bus passing by. A clock is on the Bus. Both you and a passenger on the bus are looking at the clock on the bus, and measure the length of the bus. Who measures the proper time of the clock on the bus and who measures the proper length of the bus?
a. You measure the proper time of the clock on the bus, and the passenger measures the proper length of the bus
b. The passenger measures both the proper time of the clock on the bus and the proper length of the bus
c. You measure both the proper time of the clock on the bus and the proper length of the bus
d. The passenger measures the proper time of the clock on the bus, and you measure the proper length of the bus

Answers

The passenger measures the proper time of the clock on the bus, and you measure the proper length of the bus.

The answer to the given question is option d.

In special relativity, the principle of relativity says that the laws of physics are identical in all inertial frames of reference. In other words, there is no specific frame of reference that is more fundamental or more accurate than any other. It simply implies that all the laws of physics are invariant under Galilean transformation or Lorentz transformation. So, the observer's frame of reference does not have any impact on the physical phenomenon under consideration. An observer on the bus and another observer standing on the roadside will have different measurements of time and space, as per the theory of special relativity.Therefore, the passenger on the bus, who is moving with the clock at a certain velocity relative to the stationary observer on the roadside, would measure the proper time of the clock on the bus. On the other hand, the observer on the roadside who is at rest relative to the bus, would measure the proper length of the bus.

Learn more about to measure time :

brainly.com/question/26046491

#SPJ11

a 240 g air-track glider is attached to a spring. the glider is pushed in 9.4 cm against the spring, then released. a student with a stopwatch finds that 8 oscillations take 19.0 s .

Answers

Therefore, the total energy of the system is 0.117 J.

The period, T, is the time it takes for the mass to make one full oscillation. It is calculated as follows: T = t/n, where t is the total time and n is the number of oscillations. In this case, the period is calculated as follows:

T = 19.0 s / 8= 2.38 s,

The frequency, f, is the number of oscillations per unit time, typically in hertz. It is calculated as follows: f = 1/T, where T is the period.

In this case, the frequency is calculated as follows: f = 1/2.38 s= 0.42 Hz. The angular frequency, ω, is the rate at which the mass oscillates, measured in radians per second. It is calculated as follows:ω = 2πf, where f is the frequency.

In this case, the angular frequency is calculated as follows:

ω = 2π(0.42 Hz)= 2.64 rad/s, The spring constant, k, is a measure of the stiffness of the spring. It is calculated as follows:

k = (m*g)/y,

where m is the mass, g is the acceleration due to gravity (9.81 m/s2), and y is the displacement of the spring. In this case, the spring constant is calculated as follows:

k = (0.240 kg * 9.81 m/s2) / 0.094 m= 24.8 N/m.

The total energy, E, of the system is the sum of the kinetic energy, KE, and potential energy, PE.

It is calculated as follows:

E = KE + PE, where KE is the kinetic energy and PE is the potential energy.

The kinetic energy is calculated as follows:

KE = (1/2) * m * v2

where m is the mass and v is the velocity. The velocity can be calculated as follows:

v = ω * A,

where ω is the angular frequency and A is the amplitude. In this case, the velocity is calculated as follows:

v = 2.64 rad/s * 0.094 m= 0.248 m/s.

The kinetic energy is calculated as follows:

KE = (1/2) * 0.240 kg * (0.248 m/s)2= 0.0074 J.

The potential energy is calculated as follows: PE = (1/2) * k * y2 ,

where k is the spring constant and y is the displacement of the spring. In this case, the potential energy is calculated as follows:

PE = (1/2) * 24.8 N/m * (0.094 m)2= 0.11 J.

The total energy is calculated as follows: E = 0.0074 J + 0.11 J= 0.117 J.

to know more about potential energy visit:

https://brainly.com/question/24284560

#SPJ11

The light rays from an upright object when passing through a lens from left to right lead to a virtual image. The absolute value of the magnification of this image is greater than one.
Select the correct statement.
1. The lens can either be a convergent or a divergent lens.
2. The lens can only be a divergent lens.
3. The lens can only be a convergent lens.

Answers

The correct statement is: 1. The lens can either be a convergent or a divergent lens.

When light rays from an upright object pass through a lens and form a virtual image, the absolute value of the magnification greater than one indicates that the image is larger than the object. This can occur with both convergent (convex) and divergent (concave) lenses, depending on the specific characteristics of the lens and the object's position relative to the lens. Therefore, the lens can be either convergent or divergent in this scenario.

To learn more about lens:

https://brainly.com/question/29834071

#SPJ11

which of the following is not part of the kinetic molecular theory? a. Atoms are neither created nor destroyed by ordinary chemical reactions.
b. Attractive and repulsive forces between gas molecules are negligible.
c. Gases consist of molecules in continuous, random motion.
d. The volume occupied by all of the gas molecules in a container is negligible compared to the volume of the container.

Answers

The kinetic molecular theory focuses on explaining the behavior of gases based on the motion of their molecules. The statement that is not part of the kinetic molecular theory is: a. Atoms are neither created nor destroyed by ordinary chemical reactions.

It does not specifically address the creation or destruction of atoms during chemical reactions. The other statements, b, c, and d, are consistent with the kinetic molecular theory.

b. Attractive and repulsive forces between gas molecules are negligible: This statement acknowledges that intermolecular forces between gas molecules are typically considered to be insignificant compared to the kinetic energy of the molecules themselves.

c. Gases consist of molecules in continuous, random motion: This statement recognizes that gas molecules are in constant motion and move in a random manner.

d. The volume occupied by all of the gas molecules in a container is negligible compared to the volume of the container: This statement reflects the assumption that gas molecules occupy a small fraction of the total volume of the container, leaving the majority of the space unoccupied.

Therefore, statement (a) is not part of the kinetic molecular theory as it goes beyond the scope of the theory's focus on molecular motion and interactions within gases.

To know more about kinetic molecular, refer here:

https://brainly.com/question/15013597#

#SPJ11

two tiny particles having charges 20.0e-6 c and -8.00e-6 c are separated by a distance of 20.0 cm. what are the magnitude and direction of electric field midway between these two charges?

Answers

The magnitude of the electric field midway between the two charges is 1.8 x 10^5 N/C, pointing towards the negative charge.

To find the electric field midway between the two charges, we can use the principle of superposition. The electric field due to each charge at the midpoint is calculated separately, and then we add them together.

The electric field due to a point charge is given by the equation E = k * (Q / r^2), where E is the electric field, k is the electrostatic constant (8.99 x 10^9 N m^2/C^2), Q is the charge, and r is the distance from the charge.

For the positive charge (Q1 = 20.0e-6 C), the distance to the midpoint is half of the total separation, so r1 = 0.1 m. Substituting the values into the equation, we get E1 = (8.99 x 10^9 N m^2/C^2) * (20.0e-6 C / (0.1 m)^2) = 1.8 x 10^5 N/C.

For the negative charge (Q2 = -8.00e-6 C), the distance to the midpoint is also 0.1 m. However, the direction of the electric field due to a negative charge is opposite to the direction of the electric field due to a positive charge. Therefore, the electric field due to Q2 is -1.8 x 10^5 N/C.

To find the resultant electric field, we add the electric fields due to each charge. Since they have the same magnitude but opposite directions, the resulting electric field at the midpoint is 1.8 x 10^5 N/C, pointing towards the negative charge.

The magnitude of the electric field midway between the two charges is 1.8 x 10^5 N/C, and it points towards the negative charge. This means that if a positive test charge were placed at that point, it would experience a force directed towards the negative charge.

To know more about Magnitude,visit:
https://brainly.com/question/31022175
#SPJ11

assuming that the population was in hardy-weinberg equilibrium for the g locus, what was the frequency of allele g in the gray moths that emerged in 1980?

Answers

To determine the frequency of allele g in the gray moths that emerged in 1980, we need additional information such as the genotype frequencies or allele frequencies in the population.

The Hardy-Weinberg equilibrium equation relates allele frequencies to genotype frequencies in a population. The equation is p^2 + 2pq + q^2 = 1, where p and q represent the frequencies of the two alleles (in this case, G and g), and p^2, 2pq, and q^2 represent the frequencies of the three possible genotypes (GG, Gg, and gg). Without knowing the genotype frequencies or allele frequencies, it is not possible to calculate the frequency of allele g in the gray moths that emerged in 1980. Additional information is needed to proceed with the calculation.

To learn more about frequency, https://brainly.com/question/31938473

#SPJ11

Circle the words that relate to BOTH Nuclear and Coal Burning power generation.Cross out the words that ONLY apply to Coal Burning power plants.fuel rods - steam - generator - turbine - uranium - CO2 emissions - nonrenewable - radiation - heat

Answers

The words that relate to BOTH Nuclear and Coal Burning power generation: fuel rods - steam - generator - turbine - heat.  The words that ONLY apply to Coal Burning power plants: CO2 emissions - nonrenewable

Both nuclear and coal-burning power plants use heat to generate electricity. In a nuclear power plant, the heat is produced by the fission of uranium atoms. In a coal-burning power plant, the heat is produced by the combustion of coal. The heat is then used to boil water, which turns into steam. The steam drives a turbine, which generates electricity.

Nuclear power plants do not produce CO2 emissions, but they do produce radioactive waste. Coal-burning power plants produce CO2 emissions, but they do not produce radioactive waste.

Nuclear power plants are considered to be a nonrenewable resource because uranium is a finite resource. Coal-burning power plants are also considered to be a nonrenewable resource because coal is a finite resource.

Nuclear power plants emit radiation, but the amount of radiation released is very small. Coal-burning power plants do not emit radiation.

Overall, nuclear power plants and coal-burning power plants have both advantages and disadvantages. The best choice of power plant for a particular region will depend on a variety of factors, including the availability of resources, the cost of electricity, and the environmental impact.

To learn more about Coal click here

https://brainly.com/question/12981477

#SPJ11

Solve the Schrodinger equation for an electron confined to a two-dimensional square box where the potential energy is given by V(x, y) = {0 0 < x < L, 0 < y < L infinity elsewhere Determine the normalized energy eigenfunctions and eigenvalues. (b) Show that the Fermi energy for nonrelativistic electrons (treated as if they do not interact with each other) confined in the two-dimensional square box is given by E_F = pi h^2/m (N/L^2) where N is the number of electrons, L is the length of the side of the square, and m is the mass of an electron. Such confinement to a plane happens, for example, for electrons in the layered materials that are used to make high-temperature superconductors.

Answers

The Schrödinger equation for the system can be written as Hψ(x, y) = Eψ(x, y), where H is the Hamiltonian operator, ψ(x, y) is the wave function of the electron, E is the energy eigenvalue, and (x, y) represents the coordinates within the box.

2. The Hamiltonian operator for a particle confined to a two-dimensional square box with the given potential energy is:   H = -ħ^2/(2m) * (∂^2/∂x^2 + ∂^2/∂y^2), where ħ is the reduced Planck's constant, m is the mass of the electron, and ∂^2/∂x^2 and ∂^2/∂y^2 represent the second partial derivatives with respect to x and y, respectively.

3. We assume the separability of variables, meaning we can write the wave function as the product of two functions, one depending only on x and the other depending only on y:  ψ(x, y) = X(x)Y(y).

4. Plugging the wave function into the Schrödinger equation and separating variables, we obtain two separate ordinary differential equations:X''(x) + (2mE/ħ^2 - k^2)X(x) = 0,   (1)

  Y''(y) + (2mE/ħ^2 - k^2)Y(y) = 0,   (2), where k^2 = 2mV/ħ^2.

5. The solutions to equations (1) and (2) are trigonometric functions with specific boundary conditions due to the confinement in the square box. The solutions for X(x) and Y(y) are: X_n(x) = A_n * sin(k_nx),

  Y_m(y) = B_m * sin(k_my),  where n and m are positive integers representing the quantum numbers, and k_n and k_m is given by:

  k_n = nπ/L,

  k_m = mπ/L.

6. The overall wave function ψ(x, y) is obtained by multiplying X_n(x) and Y_m(y):  ψ_{nm}(x, y) = A_nB_m * sin(k_nx) * sin(k_my).

7. The energy eigenvalues E_{nm} can be calculated by substituting the solutions for X_n(x) and Y_m(y) into the Schrödinger equation and solving for E:   E_{nm} = (ħ^2π^2/(2mL^2)) * (n^2 + m^2).

8. Normalizing the wave function requires integrating the absolute value squared of ψ_{nm}(x, y) over the entire square box and setting it equal to 1. This gives:  A_n = B_m = √(2/L).So, the normalized energy eigenfunctions are:   ψ_{nm}(x, y) = √(2/L) * sin(k_nx) * sin(k_my),with corresponding energy eigenvalues: E_{nm} = (ħ^2π^2/(2mL^2)) * (n^2 + m^2).

To determine the Fermi energy, E_F, for nonrelativistic electrons in this system, you need to consider the occupation of energy levels. In a noninteracting system, each energy level can be occupied by up to two electrons. The number of energy levels within a given range of energies is determined by the number of quantum states available. In this case, the number of states is equal to the total number of possible combinations of quantum numbers n and m. Since each quantum number can take on positive integers up to a certain limit, we have N = (n_max)^2 + (m_max)^2, where n_max and m_max are the maximum values of n and m, respectively.

Substituting this expression for N into the energy eigenvalues, we can find an expression for E_F: E_F = (πħ^2/(2mL^2)) * (N/L^2).

Therefore, the Fermi energy for nonrelativistic electrons confined in a two-dimensional square box is given by E_F = (πħ^2/(2mL^2)) * (N/L^2), where N is the number of electrons, L is the length of the side of the square, and m is the mass of an electron.

Learn more about Schrödinger equation here ;

https://brainly.com/question/1078915

#SPJ11

a nut needs to be tightened with a wrench. which force shown in the figure will apply the greatest torque to the nut?

Answers

Both options C and D will apply torque to the nut, but without more information, it is uncertain which force will apply the greatest torque.

To determine which force will apply the greatest torque to the nut, we need to consider the perpendicular distance between the force and the axis of rotation (center of the nut).

Based on the given options:

A. 90 degrees below the wrench handle: This force is directly below the axis of rotation, so it will not generate any torque.

B. 180 degrees left of the wrench handle: This force is in line with the axis of rotation, so it will not generate any torque.

C. 90 degrees at the corner of the wrench handle: This force is at a perpendicular distance from the axis of rotation, so it will generate torque.

D. 45 degrees from the corner of the wrench handle: This force is also at a perpendicular distance from the axis of rotation, so it will generate torque.

Among the given options, both C and D will apply torque to the nut.

Learn more about torque at

https://brainly.com/question/31540292

#SPJ4

The question is -

A nut needs to be tightened with a wrench. which force shown in the figure will apply the greatest torque to the nut?

A. 90 degrees below of wrench handle

B. 180 degrees left of the wrench handle

C. 90 degrees at the corner of the wrench handle

D. 45 degrees from the corner of the wrench handle

A car accelerates from rest to 30 km/h. Later, on a highway it accelerates from 30 km/h to 60 km/h. Which takes more energy, going from 0 to 30, or from 30 to 60?

Answers

A car going from 30 km/h to 60 km/h takes more energy than going from 0 km/h to 30 km/h.

The kinetic energy of a moving object is a function of its mass and velocity.

If an object is moving faster, it will have more kinetic energy than if it is moving slower.

Therefore, an object moving from 0 to 30 km/h will have less kinetic energy than an object moving from 30 to 60 km/h.

Since kinetic energy is a function of velocity, it is the change in velocity that determines the change in kinetic energy. Therefore, going from 30 km/h to 60 km/h takes more energy than going from 0 km/h to 30 km/h.

Learn more about the energy:

brainly.com/question/13881533

#SPJ11

A strong lightning bolt transfers an electric charge of about 16 C to Earth (or vice versa). How many electrons are transferred? Avogadro

Answers

In a strong lightning bolt transferring an electric charge of about 16 C to Earth (or vice versa), approximately 9.65 x 10^18 electrons are transferred.

To calculate the number of electrons, we can use Avogadro's number, which states that 1 mole of any substance contains 6.022 x 10^23 entities (atoms, molecules, or electrons). The elementary charge of an electron is 1.6 x 10^-19 C.
First, we determine the number of moles of electrons in 16 C by dividing it by the elementary charge:
Number of moles = 16 C / (1.6 x 10^-19 C) = 1 x 10^19
Then, we multiply the number of moles by Avogadro's number to find the number of electrons:
Number of electrons = 1 x 10^19 moles * 6.022 x 10^23 electrons/mole = 9.65 x 10^18 electrons
Therefore, approximately 9.65 x 10^18 electrons are transferred in a strong lightning bolt with an electric charge of about 16 C.

To know more about electrons, click here https://brainly.com/question/30784604

#SPJ11

comment on any difference observed between the temperatures you measured for the ice-and-water bath: uncalibrated probe vs. calibrated probe.

Answers

The temperatures measured using an uncalibrated probe and a calibrated probe in the ice-and-water bath showed a noticeable difference.

When comparing the temperatures measured with an uncalibrated probe and a calibrated probe in the ice-and-water bath, a significant difference was observed. An uncalibrated probe refers to a temperature-sensing device that has not been adjusted or standardized to ensure accurate readings.

It may have inherent inaccuracies due to factors such as manufacturing variations or drift over time. On the other hand, a calibrated probe has undergone a calibration process, where its readings have been adjusted to match a known reference or standard. Calibration involves comparing the probe's measurements to a known temperature source and making necessary adjustments to ensure accurate and reliable readings.

Due to the absence of calibration, the uncalibrated probe may display inaccurate temperature readings. The difference observed between the temperatures measured using the two probes could be attributed to this lack of calibration. The calibrated probe, having undergone the calibration process, is likely to provide more precise and reliable temperature measurements.

Therefore, it is essential to calibrate temperature-sensing devices regularly to ensure accurate results in scientific experiments, research, or any situation where precise temperature measurements are crucial. Calibration helps to minimize errors and discrepancies, allowing for more reliable data analysis and informed decision-making.

Learn more about uncalibrated probes here:

https://brainly.com/question/30575494

#SPJ11

The best type of lighting to use in a geriatric medical office is _______ lighting.

Answers

The best type of lighting to use in a geriatric medical office is natural or daylight-like lighting.

Natural or daylight-like lighting is considered the best choice for a geriatric medical office. It closely mimics the natural light conditions found outdoors, providing a balanced spectrum of light that is beneficial for both patients and healthcare professionals.

Natural lighting has several advantages. First, it enhances visual acuity and reduces eye strain, which is particularly important for elderly patients who may have age-related vision changes. Second, it helps regulate circadian rhythms and improve sleep-wake cycles, which can positively impact overall well-being and mood. Third, natural lighting creates a more pleasant and calming environment, potentially reducing stress and anxiety for patients.

To maximize natural lighting, large windows or skylights can be incorporated into the design of the medical office. In areas where natural light is limited, artificial lighting systems that closely resemble daylight can be installed, such as full-spectrum LED lights. These lights emit a broad spectrum of colors similar to natural sunlight, promoting a more comfortable and soothing atmosphere within the geriatric medical office.

To learn more about lighting click here

https://brainly.com/question/31064438

#SPJ11

question 2what is the major source of competition for motor carrier?2 points

Answers

The major sources of competition for motor carriers are: Intermodal transportation, Other motor carriers.

Motor carriers face significant competition from other companies operating in the same industry. These competitors offer similar transportation services, and customers often have the option to choose among different carriers based on factors such as pricing, reliability, service quality, and geographic coverage. Motor carriers must differentiate themselves and provide competitive advantages to attract and retain customers.Intermodal transportation, which involves using multiple modes of transportation (such as combining trucking with rail or sea transport), is a significant source of competition for motor carriers. Intermodal transportation can offer cost savings, efficiency improvements, and environmental benefits, attracting customers who are seeking alternative transportation options. Motor carriers need to adapt to this competition by providing efficient and reliable services or by integrating intermodal capabilities into their own operations to meet customer demands.

To learn more about motor carriers:

https://brainly.com/question/31071910

#SPJ11

Newton’s Law of Gravitation states:

x'' = - (gR^2)/(x^2)

where g = gravitational constant, R = radius of the Earth, and x = vertical distance travelled. This equation is used to determine the velocity needed to escape the Earth.

Using chain rule, find the equation for the velocity of the projectile, v with respect to height x.
Given that at a certain height xmax, the velocity is v = 0; find an inequality for the escape velocity.

Answers

This inequality tells us that the right side of the equation must be less than or equal to zero for the projectile to escape the Earth's gravitational pull.

To find the equation for the velocity of the projectile (v) with respect to height (x), we can differentiate the given equation with respect to time (t) using the chain rule.

Given:

x'' = - (gR²)/(x²)

Let's denote the derivative with respect to time.

Differentiating both sides of the equation with respect to time (t), we have:

x'' = d²x/dt²

v' = d²x/dt²

Now, apply the chain rule. Let u = x(t).

v' = d²x/dt² = d(du/dt)/dt = d²u/dt²

Now, we need to find the expression for d²u/dt²

Since x = u, we can rewrite the original equation as:

u'' = - (gR²)/(u²)

Substituting this equation into our previous expression:

v' = d²u/dt² = - (gR²)/(u²)

Therefore, the equation for the velocity of the projectile (v) with respect to height (x) is:

v' = - (gR²)/(x²)

Now, let's find an inequality for the escape velocity. At a certain height xmax, the velocity is v = 0. To escape the Earth's gravitational pull, the projectile must have a velocity greater than or equal to zero at an infinite height (as it approaches infinity). This means that the velocity should be non-negative at all heights.

v ≥ 0

Substituting the equation for v' we derived earlier:

(gR²)/(x²) ≥ 0

Since g, R, and x² are positive values, divide both sides of the inequality by -1 to change the direction of the inequality:

(gR²)/(x²) ≤ 0

This inequality tells us that the right side of the equation must be less than or equal to zero for the projectile to escape the Earth's gravitational pull.

To know more about Newton's law of gravitation follow

https://brainly.com/question/32609666

#SPJ4

this is an example of __________ art. a. freemont c. mayan b. olmec d. rock please select the best answer from the choices provided a b c d

Answers

A large stone sculpture of a head with trees behind it. This is an example of Olmec art. The correct option is b

The Olmec civilization, which thrived in Mesoamerica from approximately 1200 BCE to 400 BCE, is associated with a rich artistic tradition. One of the iconic features of Olmec art is the creation of colossal stone sculptures, often depicting human heads. These sculptures are characterized by their large size, typically weighing several tons, and their distinctive facial features, including broad noses, thick lips, and elongated heads.

The Olmec sculptures are believed to represent rulers or important individuals, and they often display symbolic and spiritual significance. The presence of trees behind the stone head in the given description suggests a connection to the natural world and the Olmec's reverence for the environment.

The Olmec art style had a significant influence on later Mesoamerican civilizations, including the Mayans and the Aztecs. The colossal stone heads, with their impressive craftsmanship and cultural significance, are among the most recognizable and enduring legacies of the Olmec civilization.

To know more about Olmec art, refer here:

https://brainly.com/question/28960210#

#SPJ11

Complete question:

A large stone sculpture of a head with trees behind it. This is an example of __________ art. a. Freemont c. Mayan b. Olmec d. Rock

find the position,size,and nature of the image formed by a spherical mirror from the folllowing data.
f= -12cm
u= -36
h= 2cm

Answers

The position of the image is 35 cm from the concave mirror, the size of the image is approximately 1.944 cm, and the nature of the image is upright.

To determine the position, size, and nature of the image formed by a spherical mirror, we can use the mirror formula:

1/f = 1/v - 1/u

where:

f is the focal length of the mirror,

u is the object distance (distance of the object from the mirror),

v is the image distance (distance of the image from the mirror).

Given data:

f = -12 cm (negative sign indicates a concave mirror)

u = -36 cm (negative sign indicates that the object is located on the same side as the incident light)

h = 2 cm (height of the object)

Substituting the values into the mirror formula, we have:

1/-12 = 1/v - 1/-36

Simplifying the equation:

-1/12 = (36 - v)/36

-1/12 = (36 - v)/36

-1 = 36 - v

v = 36 - 1

v = 35 cm

The positive value for v indicates that the image is formed on the opposite side of the mirror from the object.

To find the size of the image, we can use the magnification formula:

magnification (m) = -v/u

Substituting the values:

m = -35/-36

m ≈ 0.972

Since the magnification is positive, it indicates an upright image.

The size of the image can be determined using the magnification formula:

m = image height (h')/object height (h)

0.972 = h'/2

h' ≈ 1.944 cm

For such more questions on image

https://brainly.com/question/3457214

#SPJ8

an object 3.0cm high object is place 4.0cm in front of a converging lens with a focal length of 8.0cm. the object is located on the principal axis.
part 1. the image that will be formed will be . real, virtual or neither?
part 2. the image will be loacted on the same side of the lens at a distance of __ from the lens?
part 3. the magnification of the image will be ?
part 4. the size of the image (in cm) will be ?

Answers

Part 1: The image that will be formed will be real.Part 2: The image will be located on the same side of the lens at a distance of 24 cm from the lens.Part 3: The magnification of the image will be -2.0.Part 4: The size of the image will be 6.0 cm.

Part 1: The image that will be formed will be real

When an object is placed in front of a converging lens, the type of image formed depends on the position of the object relative to the focal point (F) of the lens. In this case, the object is located 4.0 cm in front of the lens, which is less than the focal length (8.0 cm). When the object is placed between the lens and its focal point, a real and inverted image is formed on the opposite side of the lens.

Part 2: The image will be located on the same side of the lens at a distance of 24 cm from the lens.

For a converging lens, when the object is placed between the lens and its focal point, the real image is formed on the same side as the object. The distance of the image from the lens can be calculated using the lens equation:

1/f = 1/v - 1/u

Where:

f is the focal length of the lens (8.0 cm)

v is the image distance from the lens (unknown)

u is the object distance from the lens (-4.0 cm, negative because the object is on the opposite side of the lens)

Solving for v:

1/8 = 1/v - 1/-4

1/8 = (1/v) + (1/4)

1/v = 1/8 - 1/4

1/v = (1 - 2)/8

1/v = -1/8

v = -8 cm

Since the image is formed on the same side as the object, the distance is positive: v = 8 cm.

Part 3: The magnification of the image will be -2.0.

The magnification (m) of the image can be calculated using the formula:

m = -v/u

Where:

v is the image distance from the lens (8.0 cm)

u is the object distance from the lens (-4.0 cm)

Plugging in the values:

m = -8/-4

m = 2.0

The negative sign indicates that the image is inverted.

Part 4: The size of the image will be 6.0 cm.

:The size of the image can be determined using the magnification formula:

m = -h'/h

Where:

m is the magnification (-2.0, negative due to inversion)

h' is the height of the image (unknown)

h is the height of the object (3.0 cm)

Solving for h':

-2.0 = -h'/3

h' = 6.0 cm

The size of the image is 6.0 cm, indicating that it is twice the size of the object and inverted.

To know mre about converging lens visit:

brainly.com/question/29178301

#SPJ11

A ball is tossed straight up and later returns to the point trom which it was launched the ball is subject to ar resistance as well as gravity, which of the following statements is correct The speed at which the ball returns to the point of launch is less than its speed when it was initially launched The time for the ball to fall is the same as the time for the ball to rise The force of air resistance is directed downward botly when the ball istising and when it is falling The net work done by air resistance on the ball during its flight is zero E The net work done by gravity on the ball during its fight is greater than zero

Answers

The correct statement is: The force of air resistance is directed downward both when the ball is rising and when it is falling. When a ball is tossed straight up and later returns to its point of launch, it experiences the force of gravity pulling it downward throughout its entire trajectory.

Additionally, air resistance acts on the ball in the opposite direction of its motion, regardless of whether it is rising or falling. This means that the force of air resistance is directed downward both when the ball is rising and when it is falling. The other statements are not necessarily correct: The speed at which the ball returns to the point of launch may or may not be less than its speed when initially launched, depending on factors such as air resistance and the efficiency of energy conversion. The time for the ball to fall is generally longer than the time for the ball to rise due to the influence of air resistance. The net work done by air resistance on the ball during its flight is not zero, as air resistance opposes the ball's motion and dissipates some of its energy. The net work done by gravity on the ball during its flight depends on the trajectory and the change in potential energy. In some cases, it may be zero or negative, depending on the direction of motion.

To learn more about force, https://brainly.com/question/30507236

#SPJ11

Calculate the wavelength of the photons with the given frequencies and determine the type of electromagnetic radiation for each combination.
frequency: 4.38 × 10¹4 Hz
wavelength: m
type
frequency: 4.14 x 1020 Hz
wavelength: m
type
frequency: 3.24 × 1012 Hz
wavelength: m
type

Answers

Frequency: 4.38 × 10¹⁴ Hz

Wavelength: m

Type:

To calculate the wavelength, we can use the formula: λ = c / f, where λ represents the wavelength, c is the speed of light (approximately 3 × 10^8 m/s), and f is the frequency.

λ = c / f

λ = (3 × 10^8 m/s) / (4.38 × 10¹⁴ Hz)

λ ≈ 6.85 × 10^-7 m

The wavelength of the photons with a frequency of 4.38 × 10¹⁴ Hz is approximately 6.85 × 10^-7 meters.

Based on the calculated wavelength, this falls in the range of the visible light spectrum. The photons with this frequency would correspond to violet light.

Frequency: 4.14 × 10²⁰ Hz

Wavelength: m

Type:

Using the same formula, we can calculate the wavelength:

λ = c / f

λ = (3 × 10^8 m/s) / (4.14 × 10²⁰ Hz)

λ ≈ 7.25 × 10^-9 m

The wavelength of the photons with a frequency of 4.14 × 10²⁰ Hz is approximately 7.25 × 10^-9 meters.

This wavelength is in the range of X-rays. The photons with this frequency would correspond to X-ray radiation.

Frequency: 3.24 × 10¹² Hz

Wavelength: m

Type:

Using the same formula, we can calculate the wavelength:

λ = c / f

λ = (3 × 10^8 m/s) / (3.24 × 10¹² Hz)

λ ≈ 9.26 × 10^-4 m

The wavelength of the photons with a frequency of 3.24 × 10¹² Hz is approximately 9.26 × 10^-4 meters.

This wavelength falls in the microwave region. The photons with this frequency would correspond to microwave radiation.

In summary, the type of electromagnetic radiation for each combination is as follows:

1. Frequency: 4.38 × 10¹⁴ Hz, Wavelength: 6.85 × 10^-7 m, Type: Visible light (violet).

2. Frequency: 4.14 × 10²⁰ Hz, Wavelength: 7.25 × 10^-9 m, Type: X-rays.

3. Frequency: 3.24 × 10¹² Hz, Wavelength: 9.26 × 10^-4 m, Type: Microwave radiation.

To know more about wavelength visit :

https://brainly.com/question/10750459

#SPJ11

.An aluminum tea kettle with mass 1.30 kgkg and containing 1.90 kgkg of water is placed on a stove.
Part A
If no heat is lost to the surroundings, how much heat must be added to raise the temperature from 19.0 ∘C∘C to 82.0 ∘C∘C?

Answers

The amount of heat that must be added to raise the temperature of the aluminum tea kettle and water from 19.0°C to 82.0°C, assuming no heat loss to the surroundings, is approximately 219,426 J (joules).

To calculate the amount of heat required, we can use the specific heat capacity formula:

Q = mcΔT

Where:

Q = Heat energy (in joules)

m = Mass (in kilograms)

c = Specific heat capacity (in joules per kilogram per degree Celsius)

ΔT = Change in temperature (in degrees Celsius)

First, let's calculate the heat required to raise the temperature of the aluminum tea kettle.

The specific heat capacity of aluminum is approximately 900 J/kg°C:

Q_aluminum = (mass_aluminum) x (specific heat capacity_aluminum) x (change in temperature)

          = 1.30 kg x 900 J/kg°C x (82.0°C - 19.0°C)

          = 1.30 kg x 900 J/kg°C x 63.0°C

          ≈ 87,210 J

Next, let's calculate the heat required to raise the temperature of the water. The specific heat capacity of water is approximately 4186 J/kg°C:

Q_water = (mass_water) x (specific heat capacity_water) x (change in temperature)

       = 1.90 kg x 4186 J/kg°C x (82.0°C - 19.0°C)

       = 1.90 kg x 4186 J/kg°C x 63.0°C

       ≈ 231,216 J

Finally, we add up the heat required for both the aluminum tea kettle and the water:

Total heat required = Q_aluminum + Q_water

                                  = 87,210 J + 231,216 J

 Total heat required  ≈ 318,426 J

The amount of heat that must be added to raise the temperature of the aluminum tea kettle and water from 19.0°C to 82.0°C, assuming no heat loss to the surroundings, is approximately 219,426 J (joules).

To know more about heat visit:

https://brainly.com/question/25603269

#SPJ11

Two electrons are separated by a distance of

3. 00 × 10^−6 meter. What are the magnitude and

direction of the electrostatic forces each exerts

on the other?

(1) 2. 56 × 10^−17 N away from each other

(2) 2. 56 × 10^−17 N toward each other

(3) 7. 67 × 10^−23 N away from each other

(4) 7. 67 × 10^−23 N toward each other

Answers

Electrostatic forces between electrons in vacuum are given by Coulomb’s law. Coulomb's law states that the electrostatic force between two point charges is proportional to the product of their charges and inversely proportional to the square of the distance between them.

The force is along the line joining them and repulsive if they are of the same sign and attractive if they are of opposite sign.The electrostatic forces each exerts on the other is equal in magnitude and opposite in direction. Therefore, the force on electron 1 is F21, and that on electron 2 is F12. F12 = F21 = kq1q2/r²where k = 9 × 10^9 N · m²/C² is Coulomb’s constant, q1 and q2 are the charges of the electrons in coulombs (C), and r is the separation between the electrons in meters (m).When the electrons have the same charge sign,  the force is attractive.

The force on electron 1 is away from electron 2 and the force on electron 2 is toward electron 1.Magnitude of electrostatic forces isF12 = F21 = 2.307 × 10⁻²¹ NTherefore, the electrostatic forces each exerts on the other are away from each other with a magnitude of 2.307 × 10⁻²¹ N. Hence, the correct option is (3).

To know more about proportional visit :

https://brainly.com/question/31548894

#SPJ11

Uranus' moon Ariel shows considerable surface activity, a surprise considering its small size.

a. True
b. False

Answers

Uranus' moon Ariel shows considerable surface activity, a surprise considering its small size, the given statement is true because Uranus' moon, Ariel is known for showing considerable surface activity despite its small size.

The small moon is approximately half the size of Earth's moon, but it has a geological history that makes it one of the most geologically active moons in our solar system. Ariel's surface has many varied features like valleys, craters, and ridges. It also has a relatively young surface, which indicates a steady process of tectonic activity over time. This activity is thought to be the result of gravitational interactions between Ariel and other moons of Uranus, such as Miranda, Umbriel, and Titania.

The surface of Ariel is relatively bright and has a high albedo, which is the measure of how reflective a surface is. Ariel's surface is also primarily composed of water ice, which makes it an excellent reflector of sunlight. The tectonic activity on Ariel's surface is believed to be due to tidal heating generated by the gravitational forces of Uranus and the other moons. This activity causes the surface of Ariel to stretch and compress, leading to the formation of valleys and ridges. So therefore the given statement is true because Uranus' moon, Ariel is known for showing considerable surface activity despite its small size.

To know more about gravitational forces visit:

https://brainly.com/question/30761082

#SPJ11

A transformer for a laptop computer converts a 220-V input to a 10-V output. Write down the equations that show that the primary coil has twenty two times as many turns as the secondary coil.

Answers

The transformer operates based on the principle of electromagnetic induction this equation shows that the primary coil has twenty-two times as many turns as the secondary coil.

Let's denote the number of turns in the primary coil as Np and the number of turns in the secondary coil as Ns.

The transformer operates based on the principle of electromagnetic induction, which states that the ratio of the number of turns in the primary coil to the number of turns in the secondary coil is equal to the ratio of the input voltage to the output voltage. Mathematically, this can be expressed as:

Np / Ns = Vin / Vout

In this case, the input voltage (Vin) is 220 V and the output voltage (Vout) is 10 V. Substituting these values into the equation, we get:

Np / Ns = 220 / 10

Simplifying further:

Np / Ns = 22

This equation shows that the primary coil has 22 times as many turns as the secondary coil.

Here you can learn more about electromagnetic induction

https://brainly.com/question/32444953#

#SPJ11

the function analogwrite(5, 100), will produce how much average voltage on pin 5? group of answer choices between 0 to 2 volt between 2 v to 5 v 5 v 100 v

Answers

The function analogWrite(5, 100) typically produces an average voltage between 2 V to 5 V on pin 5.

In Arduino or similar microcontroller boards, the analogWrite() function is used to output a Pulse Width Modulation (PWM) signal on a specific pin. The second argument passed to analogWrite() specifies the duty cycle of the PWM signal, ranging from 0 (0% duty cycle) to 255 (100% duty cycle). Considering a standard Arduino board, when analogWrite(5, 100) is called, a PWM signal with an average voltage of approximately 2/3 of the supply voltage (typically 5 V) will be generated on pin 5. This translates to an average voltage output between 2 V and 5 V. It's important to note that the exact voltage levels may vary depending on the specific board and its configuration, so it's always recommended to consult the documentation or specifications of the microcontroller board being used for precise information.

To learn more about average voltage, Click here:

https://brainly.com/question/11627481

#SPJ11

An electron is released from rest in a uniform electric field and accelerates to the north at a rate of 137 m/s 2 .
Part A
What is the magnitude of the electric field?
Part B
What is the direction of the electric field?
to the west
to the south
to the north
to the east

Answers

The magnitude of the electric field is 137 N/C.

The acceleration of the electron in the uniform electric field can be related to the electric field strength using the equation a = qE / m, where a is the acceleration, q is the charge of the electron, E is the electric field strength, and m is the mass of the electron.In this case, we are given the acceleration (a = 137 m/s^2). Since the electron is negatively charged, we know the direction of the electric field is opposite to the direction of acceleration. By rearranging the equation, we can solve for the electric field strength:E = (m * a) / q. Given the mass of the electron and the charge of an electron, we can substitute the values and calculate the magnitude of the electric field. The direction of the electric field is to the south.Since the electron is accelerating to the north, we know that the electric field is pointing in the opposite direction, which is to the south.

To learn more about electric field:

https://brainly.com/question/11482745

#SPJ11



A merry-go-round moves in a circle at a constant speed. Is the merry-go-round accelerating? Explain your answer.
Uniform Circular Motion:

Uniform Circular motion is the motion of a body that moves at constant angular velocity. Some examples of bodies that move at uniform circular motion are the blades of a fan set at a constant setting and the motion of a compact disc while the player is on.

Answers

The merry-go-round is accelerating since it is moving in a circle despite the fact that it is moving at a constant speed. The fact that an object moves in a circle does not always imply that it is moving at a constant speed. When an object moves in a circle, it changes direction, and this alteration of direction implies that the object is accelerating.

Even if the speed remains constant, it is still accelerating because the velocity is changing. This is referred to as centripetal acceleration. Centripetal acceleration is the acceleration caused by a force that pulls an object towards the center of the circle. Centripetal force is required for a body to move in a circle. A merry-go-round moves in a circle at a constant speed. This implies that the speed of the merry-go-round does not vary. However, the direction of motion changes continuously, indicating that the merry-go-round is constantly accelerating. Therefore, the merry-go-round is accelerating despite the fact that it is moving at a constant speed.

to know more about Centripetal acceleration visit:

https://brainly.com/question/8825608

#SPJ11

A technique is given with 120 mAs is 60 kV and produces an intensity of 240 mR. Find the new intensity in mGya, if mAs is constant and 69 kV are used.

Answers

The new intensity, when 69 kV is used while keeping the mAs constant, is approximately 3,174 mGya.

To find the new intensity in mGya (milligrays) when the kilovoltage (kV) is changed while keeping the milliampere-seconds (mAs) constant, we can use the inverse square law. The equation for the inverse square law is:

I₂ = I₁ * (D₁/D₂)²

Where:

I₁ is the initial intensity

I₂ is the new intensity

D₁ is the initial distance (which is not given in this case)

D₂ is the new distance (which is assumed to be constant in this case)

Since the mAs is constant, we can ignore the effect of distance (D) in this case.

Using the inverse square law equation, we can calculate the new intensity (I₂) in mGya:

I₂ = I₁ * (kV₂/kV₁)²

Converting the units:

240 mR = 240 * 0.01 Gy = 2.4 Gy

1 Gy = 1,000 mGy

Substituting the given values:

I₂ = 2.4 Gy * (69 kV / 60 kV)²

I₂ ≈ 2.4 Gy * (1.15)²

I₂ ≈ 2.4 Gy * 1.3225

I₂ ≈ 3.174 Gy

Converting the result back to mGya:

3.174 Gy = 3.174 × 1,000 mGy

Learn more about intensity here:

https://brainly.com/question/31787642

#SPJ11

Determine the power of the corrective contact lenses required by a hyperopic (farsighted) eye whose near point is at 60.0 cm. We assume a normal reading distance of 25 cm, and an answer in diopters.
Sample submission: 1.23
Not for credit: repeat for a myopic (nearsighted) eye whose far point is at 60.0 cm. Answer: -1.67 diopters

Answers

For the myopic eye, the power of the corrective contact lenses required is -0.000286 diopters.

To determine the power of corrective contact lenses required for a hyperopic (farsighted) eye, we need to calculate the difference between the far point and the desired reading distance.

For a hyperopic eye, the near point is farther away than the desired reading distance. In this case, the near point is given as 60.0 cm, and the desired reading distance is 25 cm.

The power of the corrective contact lenses is given by the reciprocal of the difference between the near point and the desired reading distance:

Power = 1 / (near point - desired reading distance)

Substituting the values:

Power = 1 / (60.0 cm - 25 cm)

Power = 1 / (35.0 cm)

Power = 0.0286 cm^(-1)

To convert the power to diopters, we can divide by 100:

Power = 0.0286 / 100 diopters

Hence, the power of the corrective contact lenses required for the hyperopic eye is 0.000286 diopters.

For a myopic (nearsighted) eye with a far point of 60.0 cm, the procedure is similar:

Power = 1 / (far point - desired reading distance)

Power = 1 / (60.0 cm - 25 cm)

Power = 1 / (35.0 cm)

Power = 0.0286 cm^(-1)

To convert the power to diopters, we divide by 100:

Power = 0.0286 / 100 diopters

However, since the eye is myopic, the power will be negative:

Power = -0.000286 diopters

Therefore, for the myopic eye, the power of the corrective contact lenses required is -0.000286 diopters.

To learn more about lenses click here

https://brainly.com/question/32156996

#SPJ11

A 70.0 cm long wire is vibrating in such a manner that it forms a standing wave with three antinodes. (The wire is fixed at both ends.) (a) Which harmonic does this wave represent? first harmonic second harmonic third harmonic fourth harmonic none of the above (b) Determine the wavelength (in cm) of this wave. cm (c) How many nodes are there in the wave pattern? 1 2 3 4 none of the above (d) What If? If the wire has a linear mass density of 0.00500 kg/m and is vibrating at a frequency of 261.6 Hz, determine the tension (in N) in the wire. N

Answers

(a) The wave represents the second harmonic.

(b) The wavelength of this wave is 46.7 cm.

(c) There are 4 nodes in the wave pattern.

(d) The tension in the wire is 34.6 N.

Determine what is the number of harmonic?

(a) The harmonic number in a standing wave pattern corresponds to the number of antinodes present. In this case, there are three antinodes, which indicates the third harmonic.

Determine what is the wavelength?

(b) The wavelength of a standing wave can be determined using the formula: wavelength = 2L/n, where L is the length of the wire and n is the harmonic number.

Given L = 70.0 cm and n = 3, substituting these values into the formula gives: wavelength = 2(70.0 cm)/3 = 140.0 cm/3 = 46.7 cm.

Determine what is the number of nodes?

(c) The number of nodes in a standing wave pattern is one more than the number of antinodes.

Since there are three antinodes, the number of nodes is 3 + 1 = 4.

Determine what is the wire has a linear mass density?

(d) To find the tension in the wire, we can use the formula relating wave velocity, frequency, tension, and linear mass density.

The wave velocity (v) is given by the equation: v = √(T/μ), where T is the tension and μ is the linear mass density. Rearranging the formula, we have T = μv².

Given that the linear mass density is 0.00500 kg/m, the frequency is 261.6 Hz, and the wavelength is 46.7 cm (or 0.467 m), we can substitute these values into the equation to calculate the tension: T = (0.00500 kg/m)(261.6 Hz)² = 34.6 N.

To know more about frequency, refer here:

https://brainly.com/question/29739263#

#SPJ4

Other Questions
PLEASE PLEASE PLEASE PLEASE PLEASE PLEASE PLEASE HELPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP Which of the following is likely to lead to an increase in inflation? O A. An increase in taxes. O B. Monetary and credit policies that reduce private consumption. OC. More efficient public activities. O D. An increase in money-financed spending by government. OE. None of the above. 2-30 Fixed Costs and Relevant RangeGuiterro Systems Group (GG) has a substantial year-to-year fluctuation in billingsto clients. Top management has the following policy regarding the employment of keyprofessional personnel:If Gross AnnualBillings Are$2,000,000 or less$2,000,001-2,400,000$2,400,001-2,800,000Number of Personsto be Employed101112Key ProfessionalAnnual Salariesand Related Expenses$1,000.0001,100,0001,200,000Top management believes that a minimum of ten individuals should be retained for a year or more even if billings drop drastically below $2 million.For the past five years, gross annual billings for GSG have fluctuated between $2,020,000 and $2,380,000. Expectations for next year are that gross billings will be between $2,100,000 and $2,300,000. What amounts should be budgeted for key professional personnel? Graph the relationships on an annual basis, using the two approaches illustrated in Exhibit 2-2. Indicate the relevant range on each graph. You need not use graph paper; simply approximate the graphical relationships. Which sentence is grammatically correct?1. Ella tiene a tres hermanos.2. Ricardo ve a su amigo.3. Hay a Teresa y Paco.4. l es a Manuel. Please help!!! Ill mark you as brainliest!!!!!!0.138613961 as a percent rounded to the nearest tenth how many total elements are in an array with 4 rows and 7 columns?a. 4b. 7c. 28d. 11 Gugulethu plans to purchase a car that depreciates (loses value) at a rate of 14% per year. The initial cost of the car is R258 400. Which equation represents the value, v, of the car after three year Utilitarianism means compelling a CEO to support actions that produced the greatest good for the organization.a. trueb. false Anthony, Bridgette and Coleen entered into a partnership. They invest $80,000, $ 100,000 and $ 200,000 respectively. At the end of the first year, Bridgette withdraws $ 40,000, while at the end of the second year, Coleen withdraws $80,000. In what ratio will the profit be shared at the end of 3 years? Select one: a. 6:7:8 b. 6:4:7 c. 12:16:28 d. 12:11:26 e. 12:7-8 A company limited by shares incorporated with two directors. One of them died of a heart attack during the pandemic of COVID19. Explain whether the company could continue to exist with the remaining director. Support your answer based on the Companies Act 2016. The graph of the function is shown belowWhich of the following functions best represents the graph ?A) y= 0.5(2.5)^xB) y= 3.5x^2 + 0.5C) y= 0.5(6)^xD) y= 0.5x+2.5 solve using quadratic formula q^2-2q-1=0 BRAINLY FIX THIS DUM PHRASES RULE A Florida Keys motel and a nearby SCUBA dive center regularly send each other customers. The dive center attracts customers to the motel which is conveniently located near the dive center. The dive center also sends customers to other motels in the area. The motel owner learns a lot about the SCUBA dive business in the process. What would be the most likely long-term consequence of this business relationship? The motel owner will stop sending customers to the dive center and will instead send customers to the dive center's competitors. The motel owner will greatly increase the rental price of his motel rooms to customers that come from the dive center. The motel owner will open a dive center to give customers incentive to stay in his motel and to earn profits from both businesses. The motel owner will sever his ties with the SCUBA dive center because the dive center sends customers to the motel's competitors. When an arbitrary substance undergoes an ideal throttling process through a valve at steady state, (SELECT ALL THAT APPLY) inlet and outlet mass flowrates will be equal. inlet and outlet specific enthalpies will be equal. inlet and outlet pressures will be equal. inlet and outlet mass flowrates will be equal. inlet and outlet specific enthalpies will be equal. inlet and outlet temperatures will be equal. Which are consumers?SELECT ALL THAT APPLYa Producersb GrazersPredatorsd Scavengerse Photosynthesizing plantsf Decomposers PLEASE HELP ME ITS AN EMERGENCY! Which position shows spring in the Northern hemisphere? For the following equation insert the correct coefficients that would balance the equation. If no coefficient is need please insert the NUMBER 1. 1. CH4 + O2 --> CO2 + H2O 3 Completar Carolina is on vacation with her friends. Fill in the blanks with the correct forms of ser or estar. Question 1 with 12 blanks Mis amigas y yo (1) 1 of 12 de Michigan y ahora estamos de vacaciones en Cancn. Yo (2) 2 of 12 estudiante de medicina; Rebeca, Paulina y Daniela estudian administracin de empresas. Nosotras (3) 3 of 12 cansadas porque (4) 4 of 12 muy trabajadoras y tenemos muchos exmenes. Necesitamos descansar! Nuestro hotel (5) 5 of 12 bonito y todas las decoraciones (6) 6 of 12 de coral. Tiene habitaciones cmodas y (7) 7 of 12 muy limpias. Pero Rebeca y Daniela (8) 8 of 12 enojadas porque su habitacin (9) 9 of 12 en la planta baja y no pueden ver el mar. Maana (10) 10 of 12 domingo y regresamos a casa. Mis padres (11) 11 of 12 preocupados porque (12) 12 of 12 nevando mucho en Michigan.