Find a solution to dx = = xy + 8x + 2y + 16. If necessary, use k to denote an arbitrary con

Answers

Answer 1

The obtained solution is in implicit form: erf(0.5x) = -4y - 32 + C, where C is an arbitrary constant.

To solve the given differential equation, we'll use the method of integrating factors. The equation can be rewritten as:

dx = xy + 8x + 2y + 16

Rearranging the terms:

dx - xy - 8x = 2y + 16

To find the integrating factor, we'll consider the coefficient of y, which is -x. Multiplying the entire equation by -1 will make it easier to work with:

-x dx + xy + 8x = -2y - 16

The integrating factor is defined as the exponential of the integral of the coefficient of y. In this case, the coefficient is -x, so the integrating factor is [tex]e^{\int -x dx}[/tex].

Integrating -x with respect to x gives us:

∫-x dx = [tex]-0.5x^2[/tex]

Therefore, the integrating factor is [tex]e^{(-0.5x^2)[/tex].

Now, multiply the original equation by the integrating factor:

[tex]e^{-0.5x^2} * (dx - xy - 8x) = e^{-0.5x^2} * (2y + 16)[/tex]

Using the product rule of differentiation on the left side:

[tex](e^{-0.5x^2} * dx) - (x * e^{-0.5x^2} * dx) - (8x * e^{-0.5x^2}) = 2y * e^{-0.5x^2} + 16 * e^{-0.5x^2}[/tex]

Simplifying the left side:

[tex]d(e^{-0.5x^2}) - (x * e^{-0.5x^2} * dx) - (8x * e^{-0.5x^2}) = 2y * e^{-0.5x^2} + 16 * e^{-0.5x^2}[/tex]

Now, integrating both sides with respect to x:

[tex]\int d(e^{-0.5x^2}) - \int x * e^{-0.5x^2} * dx - \int 8x * e^{-0.5x^2} dx = 2y * e^{-0.5x^2} + 16 * e^{-0.5x^2} dx\\[/tex]

The first term on the left side integrates to [tex]e^{-0.5x^2}[/tex]. The second term can be solved using integration by parts,

considering u = x and [tex]dv = e^{-0.5x^2} dx[/tex]:

[tex]\int x * e^{-0.5x^2} * dx = -0.5\int e^{-0.5x^2} * dx^2 = -0.5 * e^{-0.5x^2[/tex]

The third term can also be solved using integration by parts, considering u = 8x and [tex]dv = e^{-0.5x^2} dx[/tex]:

[tex]\int 8x * e^{-0.5x^2} * dx = -4\int x * e^{-0.5x^2} * dx = -4 * -0.5 * e^{-0.5x^2} = 2 * e^{-0.5x^2}\\[/tex]

Simplifying the right side:

[tex]\int 2y * e^{-0.5x^2} + 16 * e^{-0.5x^2} dx = \int (2y + 16) * e^{-0.5x^2} dx\\[/tex]

Now, let's combine the terms on both sides:

[tex]e^{-0.5x^2} - 0.5 * e^{-0.5x^2} - 2 * e^{-0.5x^2} = \int (2y + 16) * e^{-0.5x^2} dx[/tex]

Simplifying further:

e^{-0.5x^2} - 0.5 * e^{-0.5x^2} - 2 * e^{-0.5x^2} = \int (2y + 16) * e^{-0.5x^2} dx

Combining the terms on the left side:

[tex]-0.5 * e^{-0.5x^2} = \int (2y + 16) * e^{-0.5x^2} dx[/tex]

Now, we can integrate both sides:

[tex]-0.5 \int e^{-0.5x^2} dx = \int (2y + 16) * e^{-0.5x^2} dx[/tex]

The integral on the left side is a well-known integral involving the error function, erf(x):

[tex]-0.5 \int e^{-0.5x^2}dx = -0.5 \sqrt{\pi /2} * erf(0.5x)[/tex]

The integral on the right side is simply (2y + 16) times the integral of [tex]e^{-0.5x^2[/tex], which is [tex]\sqrt{ \pi /2}[/tex].

Putting it all together:

-0.5 √(π/2) * erf(0.5x) = (2y + 16) √(π/2) + C

Dividing both sides by -0.5 √(π/2) and simplifying:

erf(0.5x) = -4y - 32 + C

The error function erf(0.5x) is a known function that cannot be easily expressed in terms of elementary functions. Therefore, we have obtained a solution in implicit form:

erf(0.5x) = -4y - 32 + C

where C is an arbitrary constant.

To learn more about differential equation visit:

brainly.com/question/31402133

#SPJ11


Related Questions

(22) + (3x) = 4
solve for x

Answers

Answer:

-6

Step-by-step explanation:

Step One: The goal is to isolate the x. So first, we would do 4-22, which is -18. The equation is: 3x=-18.

Step Two: Lastly, we need to divide by three to completely isolate the x. This is -6.

Jim , a meteorologist for local television XYZ, would like to report the rainfall. The following are the rainfall measurements (in inches) for to-day’s date for 14 randomly chosen past years. The data are as follows: 0.47 0.27 0.13 0.54 0.08 1.05 0.34 0.26 0.42 0.17 0.50 0.86 0.01 2.5 NOTE: answers should be given to 2 decimal places REQUIRED 1. Find the RANGE of the data provided and what measure does this show 2. Calculate the sample variance . Why is variance not written in? 3. Calculate the sample standard deviation. What information does this measure give to the users? Why is it necessary to compute standard deviation instead of stopping at the variance calculation? 4. Find the COEFFICIENT OF VARIATION 5. Use Z-score to find if there is any outliers in the series

Answers

Where the above is given,

Range -2.49 inchesSample variance -  0.5599Sample standard deviation -  0.7483Coefficient of variation - 7497.32% Z14 = 3.3999, which is greater than 2, suggesting that the data point 2.50 inches may be considered an outlier based on the Z-Score criterion.

What is the   explanation for the above ?

Range

Range = Maximum value - Minimum value

Range = 2.50 - 0.01

= 2.49 inches

Sample Variance

Step 1  - Calculate the mean (average) of the data.

Mean = (0.47 + 0.27 +0.13 + 0.54 + 0.08 + 1.05 + 0.34 +   0.26 + 0.42 + 0.17 + 0.50 + 0.86 + 0.01 + 2.5) / 14

= 1.36 /14

= 0.0971

Step 2  - Calculate the squared deviation from the mean for each data point.

Deviation from mean = Data point - Mean

Squared deviation = (Deviation from mean)²

Sum of squared deviations = (0.3739 + 0.0091 + 0.7307 + 0.1638 + 0.9469 + 0.104 + 0.0145 + 0.0081 + 0.0971 + 0.3037 + 0.0601 + 0.2601 + 1.0679 +   3.1391)

= 7.2799

Sample Variance = Sum of squared deviations / (n - 1)

= 7.2799/ (14 - 1)

= 0.5599

Sample Standard Deviation:

Sample Standard Deviation = √(Sample Variance)

= √0.5599

= 0.7483

Coefficient of Variation:

Coefficient of Variation = (Sample Standard Deviation / Mean) * 100

= (7.2799/ 0.0971) * 100

= 7497.32

Z-Scores for each data point

Z1= (0.47   - 0.0971)/ 0.7212= 0.5318

Z2= (0.27   - 0.0971)/ 0.7212= 0.9983

Z3= (0.13   - 0.0971)/ 0.7212= 0.0456

Z4= (0.54   - 0.0971)/ 0.7212= 0.6189

Z5= (0.08   - 0.0971)/ 0.7212=   -0.0251

Z6= (1.05   - 0.0971)/ 0.7212= 1.2914

Z7= (0.34   - 0.0971)/ 0.7212= 0.4574

Z8= (0.26   - 0.0971)/ 0.7212= 0.2251

Z9= (0.42   - 0.0971)/ 0.7212= 0.4969

Z10= (0.17   - 0.0971)/ 0.7212= 0.1002

Z11= (0.50   - 0.0971)/ 0.7212= 0.6506

Z12= (0.86   - 0.0971)/ 0.7212= 1.0242

Z13= (0.01   - 0.0971)/ 0.7212=   -0.1208

Z14= (2.50   - 0.0971)/ 0.7212= 3.3999

To determine   if there are any outliers, we can compare the absolute values of the Z-Scores to a certain threshold , commonly considered as 2.

If the absolute value of a Z-Score is greater than 2,   it indicates that the corresponding data point is an outlier.

In this case,   Z14 = 3.3999, which is greater than 2 , suggesting that the data point 2.50 inches may be considered an outlier based on the Z-Score criterion.

Learn more about outliers;
https://brainly.com/question/29546240
#SPJ4

What is the value of x? sin(x+37)°=cos(2x+8)° Enter your answer in the box. x =

Answers

The answer is x = 15.

15 or 20.33 are the possible values of the x.

What is algebraic Expression?

Any mathematical statement that includes numbers, variables, and an arithmetic operation between them is known as an expression or algebraic expression. In the phrase 4m + 5, for instance, the terms 4m and 5 are separated from the variable m by the arithmetic sign +.

We know that sin(x+37)°=cos(90°-(x+37)°) and cos(2x+8)°=sin(90°-(2x+8)°)

So we have sin(x+37)°=cos(2x+8)° becomes sin(x+37)°=sin(82°-2x)

For the above equation to be true, either of the following must hold:

x+37 = 82 - 2x (since the sin function is periodic)

x+37 = 180 - (82-2x)

Solving the first equation for x gives:

3x = 45

x = 15

Solving the second equation for x gives:

3x = 61

x = 20.33 (rounded to two decimal places)

Therefore, the possible values of x are 15 or 20.33 (rounded to two decimal places).

Learn more about algebraic Expression here:

https://brainly.com/question/953809

#SPJ2

what is 4836 divided by 9735829 plus 28369 times 284383?

Answers

Answer:

2.28871.0005^14

Step-by-step explanation:

Answer:

i got 8067661468.26  

Step-by-step explanation:





Express (–1+iV3) and (-1 – iV3) in the exponential form to show that:
2nnt (-1+iV3)n +(-1 – iV3)n = 2n+1cos 3

Answers

The proof of 2ⁿ (-1 + i√3)ⁿ + (-1 - i√3)ⁿ can be expressed as  2ⁿ⁺¹cos(πn/3) is proved below.

To express (-1 + i√3) and (-1 - i√3) in exponential form, we can use Euler's formula, which states that [tex]e^{(i\theta)[/tex] = cos(θ) + isin(θ).

Let's start with (-1 + i√3):

(-1 + i√3) = 2 x (cos(π) + i x sin(π/3))

Now, let's simplify (-1 - i√3):

(-1 - i√3) = 2 (cos(π) - isin(π/3))

Therefore, we have:

(-1 + i√3) = 2  e^(iπ/3)

(-1 - i√3) = 2  e^(-iπ/3)

Now, let's substitute these exponential forms into the expression:

2ⁿ  (-1 + i√3)^n + (-1 - i√3)^n

= 2ⁿ(2  e^(iπ/3))^n + (2  e^(-iπ/3))^n

= 2ⁿ⁺¹  e^(iπn/3) + 2^(n+1) e^(-iπn/3)

Using Euler's formula again, we know that [tex]e^{(i\theta)} + e^{(-i\theta)[/tex] = 2cos(θ).

Therefore, we can rewrite the expression as:

2ⁿ⁺¹ (cos(πn/3) + cos(-πn/3))

=  2ⁿ⁺¹(cos(πn/3) + cos(πn/3))

=  2ⁿ⁺¹ 2  cos(πn/3)

=  2ⁿ⁺¹cos(πn/3)

So, we have shown that  2ⁿ (-1 + i√3)ⁿ + (-1 - i√3)ⁿ can be expressed as  2ⁿ⁺¹cos(πn/3).

Learn more about Exponential form here:

https://brainly.com/question/29166310

#SPJ1

Part A

An economist has measured people's annual salary (in thousands of dollars) and their years of relevant job experience, thinking that a linear relationship between them might exist.

Let the proposed regression relationship between Salary and experience be as follows: E(Salary) = beta subscript 0 space plus space beta subscript 1 space cross times Years of Experience

and assume the output from running the regression is as follows:

Call:

lm(formula = Salary ~ Year, data = Income)

Residuals:

Min 1Q Median 3Q Max

-53.650 -20.256 0.127 18.423 65.596

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 31.8387 8.5565 3.721 0.00033***

Years 2.8205 0.3302 8.543 1.74e-13 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 25.98 on 98 degrees of freedom

Multiple R-squared: 0.4268, Adjusted R-squared: 0.421

F-statistic: 72.98 on 1 and 98 DF, p-value: 1.737e-13

---

Residual standard error: 8.044 on 445 degrees of freedom

Multiple R-squared: 0.6914, Adjusted R-squared: 0.6886

F-statistic: 249.2 on 4 and 445 DF, p-value: < 2.2e-16

If we wished to conduct a hypothesis test as to whether there is a linear relationship between salary and years of experience, what are the correct null and alternate hypotheses?

Answers:

a.

H subscript 0 : space beta subscript 0 space equals space 0 H subscript 1 : space beta subscript 0 greater than space 0

b.

H subscript 0 : space beta subscript 0 space equals space 0 H subscript 1 : space beta subscript 0 space end subscript not equal to space 0

c.

H subscript 0 space : thin space beta subscript 1 space equals space 0 H subscript 1 : space beta subscript 1 space end subscript space not equal to space 0

d.

H subscript 0 : space beta subscript 1 space equals space 0 H subscript 1 : space beta subscript 1 space greater than space 0

Part B

Using the output in Q1, what is the correct p-value for the test in Q1?

Answers:

a.

0.00033

b.

0.000000000000174

c.

1.74e-13

d.

0.00000393

Part C

What is the fitted regression model from this output in Q1?

Answers:

a.

E(Salary) = 31.8387 + 2.8205 x Years of Experience

b.

E( Years of Experience ) = 2.8205 + 31.8387 x Salary

c.

E( Years of Experience ) = 31.8387 + 2.8205 x Salary

d.

E(Salary) = 2.8205 + 31.8387 x Years of Experience

Part D

Which of the following is a correct statement regarding r squared ?

Answers:

a.

r squared space equals space 0.4268 meaning that Years of Experience explains 42.68 percent sign of the variability in Salary.

b.

r squared space equals space 0.00033 meaning that Years of Experience explains 0.033 percent sign of the variability in Salary.

c.

r squared space equals space 0.00033 and because 0.00033 space less than space 0.05 we reject H subscript 0 and accept H subscript 1 at the 5% level of significance, ie we conclude there is a significant linear relationship between Salary and Years of Experience.

d.

r squared space equals space 0.4268 and because 0.4268 space greater than space 0.05 we do not reject H subscript 0 at the 5% level of significance, ie we conclude there is no significant linear relationship between Salary and Years of Experience.

Answers

The correct statement regarding r squared is:

r squared equals 0.4268 meaning that Years of Experience explains 42.68 percent of the variability in Salary.

Part A: The correct null and alternate hypotheses are:

H₀: β₁=0;

H₁: β₁≠0.

Part B: The correct p-value for the test in Q1 is 1.74e-13.

Part C: The fitted regression model from this output in Q1 is:

E(Salary) = 31.8387 + 2.8205 x Years of Experience.

Part D: The correct statement regarding r squared is:

r squared equals 0.4268 meaning that Years of Experience explains 42.68 percent of the variability in Salary.

Explanation: The output shows a multiple linear regression model:

Salary=β0+β1x

Years of Experience + ϵ.β0 is the intercept and represents the expected mean salary for an individual with 0 years of experience.

β1 is the slope and represents the expected change in salary due to one year increase in experience.

ϵ is the error term (deviation from the expected salary).

The correct null and alternate hypotheses are:

H₀: β₁=0 (there is no linear relationship between salary and years of experience).

H₁: β₁≠0 (there is a linear relationship between salary and years of experience).

The correct p-value for the test in Q1 is 1.74e-13, which is much smaller than the significance level of 0.05.

Thus, we reject the null hypothesis and conclude that there is sufficient evidence to suggest that there is a linear relationship between salary and years of experience.

The fitted regression model from this output in Q1 is:

E(Salary) = 31.8387 + 2.8205 x Years of Experience.

The coefficient of determination, or R-squared, is a statistical measure that shows how well the regression model fits the observed data.

It is the proportion of the variance in the dependent variable that is explained by the independent variable(s).

To know more about hypothesis visit:

https://brainly.com/question/606806

#SPJ11

If Y is inversely proportional to x and y=4 when x= 100, what is the value of y when x=250

Answers

Answer:

y=10

Step-by-step explanation:

[tex]\frac{4}{100}[/tex]=[tex]\frac{y}{250}[/tex]

cross-multiply, 4*250=100y

isolate the variable and solve for y, 1000=100y

divide 100 on both sides, 10=y

The odds against a certain football team winning the championship are 70 : 1. a) Determine the probability that the team wins the championship. b) Determine the probability that the team does not win the championship.

Answers

a) The probability that the team wins the championship is approximately 0.0141 or 1.41%. b) The probability that the team does not win the championship is approximately 0.9859 or 98.59%.

a) To determine the probability that the team wins the championship, we need to convert the odds against winning into a probability.

The odds against winning are given as 70:1. This means that for every 70 unfavorable outcomes (losing), there is 1 favorable outcome (winning).

To calculate the probability of winning, we divide 1 by the sum of the favorable and unfavorable outcomes:

Probability of winning = 1 / (70 + 1) = 1 / 71 ≈ 0.0141 (or 1.41%)

Therefore, the probability that the team wins the championship is approximately 0.0141 or 1.41%.

b) The probability of not winning the championship is equal to 1 minus the probability of winning:

Probability of not winning = 1 - 0.0141 = 0.9859 (or 98.59%)

Therefore, the probability that the team does not win the championship is approximately 0.9859 or 98.59%.

To learn more about probability visit:

brainly.com/question/32037709

#SPJ11

Let A and B be disjoint compact subspaces of a Hausdorff space X. Show that there exist disjoint open sets U and V, with ACU and BCV.

Answers

In Hausdorff-space "X", if A and B are disjoint "compact-subspaces", then there is disjoint "open-sets" U and V such that A is contained in U and B is contained in V, this is because by Hausdorff-Property, the existence of disjoint open neighborhoods for any two "distinct-points".

To prove the existence of disjoint "open-sets" U and V with A⊂U and B⊂V, where A and B are "compact-subspaces" of "Hausdorff-space" X,

Step (1) : A and B are disjoint compact-subspaces, we use Hausdorff property to find "open-sets" Uₐ and [tex]U_{b}[/tex] such that "A⊂Uₐ" and "B⊂[tex]U_{b}[/tex]", and "Uₐ∩[tex]U_{b}[/tex] = ∅". This can be done for every pair of points in A and B, respectively, because X is Hausdorff.

Step (2) : We consider, set U = ⋃ Uₐ, where "union" is taken over all of Uₐ for each-point in A. U is = union of "open-sets", hence open.

Step (3) : We consider set V = ⋃ [tex]U_{b}[/tex], where union is taken over for all [tex]U_{b}[/tex] for "every-point" in B. V is also a union of open-sets and so, open.

Step (4) : We claim that U and V are disjoint. Suppose there exists a point x in U∩V. Then x must be in Uₐ for some point a in A and also in [tex]U_{b}[/tex] for some point b in B. Since A and B are disjoint, a and b are different points. However, this contradicts the fact that Uₐ and [tex]U_{b}[/tex] are disjoint open sets.

Therefore, U and V are disjoint open sets with A⊂U and B⊂V.

Learn more about Subspaces here

https://brainly.com/question/30075485

#SPJ4

The given question is incomplete, the complete question is

Let A and B be disjoint compact subspaces of a Hausdorff space X. Show that there exist disjoint open sets U and V, with A⊂U and B⊂V.

Which expression is equivalent to 1.5a + 2.4 (a + 0.5b) - 0.2b?
a. 3.9a + b
b. 2.5a + 0.7b
c. 3.9a + 0.3b
d. 2.5a + 0.3b + 2.4

Answers

a) 3.9a+b hope this helps

The answer is A, 3.9a + b

Step-by-step explanation:

youre welcome

Use digits to write the value of the 4 in this number.

842,963

Answers

Answer:

40,000

Step by step explanation:

842,963

840,000

40,000

800,000-40,000-2,000-900-60-3


Bacteria triples every 3 hours. If there are 450 bacteria at t=0
min how many after 200 min

Answers

Therefore, the number of bacteria after 200 minutes can be found by multiplying the initial number of bacteria (450) by the tripling factor (3) raised to the power of 2 (for the full cycles) and multiplying by the remaining fraction of the tripling factor for the partial cycle.

Since the bacteria triples every 3 hours, we can calculate the number of tripling cycles that have occurred in 200 minutes. Since 3 hours is equivalent to 180 minutes, there are 2 full cycles in 200 minutes. To calculate the remaining fraction of the tripling cycle, we divide the remaining time (20 minutes) by the length of a single cycle (180 minutes). The fraction is 20/180, which simplifies to 1/9.

Now, we can calculate the number of bacteria after 200 minutes. We start with the initial number of bacteria, which is 450, and multiply it by the tripling factor (3) raised to the power of the number of full cycles (2). This accounts for the full cycles. Then, we multiply this result by the remaining fraction of the tripling factor (1/9) to account for the partial cycle.

Therefore, the number of bacteria after 200 minutes can be calculated as follows:

Number of bacteria = 450 * (3^2) * (1/9) = 450 * 9 * (1/9) = 450

Hence, after 200 minutes, there will still be 450 bacteria.

Learn more about factor here:

https://brainly.com/question/14549998

#SPJ11

a) The difference of the age of two sisters is 5 years and the product of their age is
24. Find the age of the two sisters.

Answers

Answer:

3 years old and 8 years old

Step-by-step explanation:

8-3=5

3x8=24

plz mark me as brainliest

2. How does the graph of the following function compare to the quadratic parent function? * (1 Point) 8 (x) = x2 + 5 Moves up 5 Moves down 5 Moves to the left 5 Moves to the right 5

Answers

Answer:

b

Step-by-step explanation:

oi did the quiz f. 6373737

A cylinder has a volume of 2,309.07 cubic cm and a height of 15 cm. What is the
radius of the cylinder? Use 3.14 for st in your calculations and round to the
nearest whole number.
cm

Answers

Answer:

7

Step-by-step explanation:

the answer I got was 7 hope this helped

Compute in the ancient Egyptian way: (b) 55÷6 (a) 26 ÷ 20 (c) 71 21 ÷ (d) 25 18 (e) 52 ÷ 68 (f) 13 36

Answers

Ancient Egyptian way of computation, division was performed using a method called "repeated subtraction." (a) 26 ÷ 20 = 1 remainder 6.

(b) 55 ÷ 6 = 9 remainder 19.

(c) 71 21 ÷ = 50 remainder 29.

(d) 25 18 ÷ = 7.

(e) 52 ÷ 68 = 0 remainder 52.

(f) 13 36 ÷ = 0 remainder -23.

In the ancient Egyptian way of computation, division was performed using a method called "repeated subtraction." Here's how it would be applied to the given divisions:

(a) 26 ÷ 20:

To divide 26 by 20, we repeatedly subtract 20 from 26 until we cannot subtract anymore. The number of times we subtract is the quotient.

26 - 20 = 6

6 - 20 = -14 (cannot subtract anymore)

Therefore, 26 ÷ 20 = 1 remainder 6.

(b) 55 ÷ 6:

Using the same method, we repeatedly subtract 6 from 55 until we cannot subtract anymore.

55 - 6 = 49

49 - 6 = 43

43 - 6 = 37

37 - 6 = 31

31 - 6 = 25

25 - 6 = 19 (cannot subtract anymore)

Therefore, 55 ÷ 6 = 9 remainder 19.

(c) 71 21 ÷:

To divide 71 21 by a number, we first convert it to a whole number by multiplying the fraction part by the denominator.

71 21 = 71 + (21/100) = 71 + 21/100

Now, we can perform division using repeated subtraction.

71 - 21 = 50

50 - 21 = 29 (cannot subtract anymore)

Therefore, 71 21 ÷ = 50 remainder 29.

(d) 25 18 ÷:

Similar to the previous case, we convert 25 18 to a whole number.

25 18 = 25 + (18/100) = 25 + 18/100

Performing division:

25 - 18 = 7

Therefore, 25 18 ÷ = 7.

(e) 52 ÷ 68:

Since 52 is smaller than 68, the quotient is 0.

Therefore, 52 ÷ 68 = 0 remainder 52.

(f) 13 36 ÷:

Converting to a whole number:

13 36 = 13 + (36/100) = 13 + 36/100

Performing division:

13 - 36 = -23 (cannot subtract anymore)

Therefore, 13 36 ÷ = 0 remainder -23.

Please note that the ancient Egyptian method of division is not as efficient as modern division methods and may not produce exact decimal results.

To know more about Ancient Egyptian here

https://brainly.com/question/29019179

#SPJ4

Find the distance between the points (–8,10) and (4,10).

Answers

Answer:

12

Step-by-step explanation:

√(x2 - x1)² + (y2 - y1)²

√[4 - (-8)]² + (10 - 10)²

√(12)² + (0)²

√144 + 0

√144

=12

2/6, 5/12, 3/7, and 4/10. List least to most

Answers

Turn them into percentages:
2/6=1/3=33.333%
5/12=42%
3/7=43%
4/10=2/5=40%

Now put them in order :)

2/6,4/10,5/12,3/7

A guy wire supporting a radio tower is attached to the tower 128 feet above the ground. The wire makes a 45 degree angle with the ground. How long is the guy wire

Answers

Answer:

181 feet

Step-by-step explanation:

From the the diagram attached ,

Sinθ = a/b..................... Equation 1

Where θ = angle to the horizontal, a = Height of the tower, b = length of the wire.

make b the subject of the equation

b = a/sinθ................. Equation 2

Given: a = 128 feet, θ = 45°

Substitute these values into equation 2

b = 128/sin45°

b = 128/0.7071

b = 181 feet

b = 181 feet

Consider the following IVP: u"(t) + u'(t) - 12u (t)=0 (1) u (0) = 60 and u'(0) = 56. Show that u(t)=c₁₁e² + c ₂² -4 satisifes ODE (1) and find the values of c ER and C₂ ER such that the solution satisfies the given initial values.

Answers

The values of c₁ and c₂ that satisfy the initial values u(0) = 60 and u'(0) = 56 are:

c₁ = 148 / (3e²)

c₂ = (20 - 148/9)e⁴

The given solution, u(t) = c₁e² + c₂e⁻⁴, indeed satisfies the given ordinary differential equation (ODE) u"(t) + u'(t) - 12u(t) = 0. To find the values of c₁ and c₂ such that the solution satisfies the initial values u(0) = 60 and u'(0) = 56, we substitute these values into the solution.

First, let's find u(0) by substituting t = 0 into the solution:

u(0) = c₁e² + c₂e⁻⁴

Since u(0) = 60, we have:

60 = c₁e² + c₂e⁻⁴    (Equation 2)

Next, let's find u'(0) by differentiating the solution with respect to t and substituting t = 0:

u'(t) = 2c₁e² - 4c₂e⁻⁴

u'(0) = 2c₁e² - 4c₂e⁻⁴

Since u'(0) = 56, we have:

56 = 2c₁e² - 4c₂e⁻⁴    (Equation 3)

Now we have a system of two equations (Equations 2 and 3) with two unknowns (c₁ and c₂). We can solve this system to find the values of c₁ and c₂.

To do that, let's first divide Equation 3 by 2:

28 = c₁e² - 2c₂e⁻⁴

Next, let's multiply Equation 2 by 2:

120 = 2c₁e² + 2c₂e⁻⁴

Adding the two equations, we get:

148 = 3c₁e²

Dividing both sides by 3e², we find:

c₁ = 148 / (3e²)

Substituting this value of c₁ back into Equation 2, we can solve for c₂:

60 = (148 / (3e²))e² + c₂e⁻⁴

60 = 148/3 + c₂e⁻⁴

60 - 148/3 = c₂e⁻⁴

20 - 148/9 = c₂e⁻⁴

c₂ = (20 - 148/9)e⁴

Therefore, the values of c₁ and c₂ that satisfy the initial values u(0) = 60 and u'(0) = 56 are:

c₁ = 148 / (3e²)

c₂ = (20 - 148/9)e⁴

To know more about ordinary differential equation (ODE), refer here:

https://brainly.com/question/30257736#

#SPJ11

solve for x to the nearest

Answers

rad15
use the pythagorean theorem on both triangles to find x
y^2 + 6^2 = 10^2
y=8
7^2 + x^2 = 8^2
x=radical 15

Answer:

in right angled triangleBCD

BC=√{DC²-BC²)=√{10²-6²)=8

again in right angled triangle ABC

AB=√(BC²-AC²)

x=√(8²-7²)=3.87

A fresh food distributor receives orders from 100 customers daily. Assume that the quantities ordered by customers, in kg, are independent continuous random variables uniformly distributed over the interval (0, 9). Assuming that the distributor only has the capacity to ship 477 kg of products daily, calculate the probability that all orders are fulfilled on a day chosen at random. Indicate the result to at least four decimal places.

Answers

The probability that all orders are fulfilled on a day chosen at random is approximately 1. Answer: 1.0000 (rounded off to at least four decimal places).

The quantities ordered by customers are independent continuous random variables, and they are uniformly distributed over the interval (0, 9).

The fresh food distributor only has the capacity to ship 477 kg of products daily, and the distributor receives orders from 100 customers daily.

The probability that all orders are fulfilled on a day chosen at random is given by;P(all orders fulfilled) = P(X1 + X2 + ... + X100 < 477)

where X is the quantity ordered by each customer. Since X is a continuous random variable, we can use the probability density function of a uniform distribution to calculate the probability density function of X as;f(x) = 1/9, 0 < x < 9

Hence, the probability that all orders are fulfilled on a day chosen at random is given by;

P(all orders fulfilled) = P(X1 + X2 + ... + X100 < 477)= P[(X1/9) + (X2/9) + ... + (X100/9) < (477/9)]= P[U < (53 + 1/3)], where U ~ Uniform(0, 1)

Now, using the central limit theorem, we can approximate the distribution of U by a normal distribution with mean μ = 1/2 and variance σ^2 = 1/12 such that;Z = (U - μ) / σ ~ N(0, 1)

Hence, P[U < (53 + 1/3)] = P[Z < (53 + 1/3 - μ) / σ]= P[Z < (53 + 1/3 - 1/2) / sqrt(1/12)]≈ P[Z < 9.6067]≈ 1

Thus, the probability that all orders are fulfilled on a day chosen at random is approximately 1. Answer: 1.0000 (rounded off to at least four decimal places).

Know more about central limit theorem here,

https://brainly.com/question/898534

#SPJ11

Function f is a quadratic function passing through the points (-4,0),(0,–12) and (3,0). Function g is modeled by the graph. Over which interval are both functions negative? ​

Answers

Answer:

Open points on 1 and 3 with ray connecting them

Step-by-step explanation:

Because it's right.

Answer:

Step-by-step explanation:

What is the area of a rectangle with side lengths 2/5 feet and 4/6 feet?

Answers

Answer:

[tex]\frac{4}{15}[/tex]  (4/15)

Step-by-step explanation:

[tex]\frac{4}{6}=\frac{2}{3}[/tex]

[tex]\frac{2}{5}*\frac{2}{3};[/tex]

1- Multiply the numerators:

[tex]2*2=4[/tex]

2- Multiply the denominators:

[tex]5*3=15[/tex]

3- Thus:

[tex]\frac{2}{5}*\frac{2}{3}= \frac{4}{15}[/tex]

Hope this helps ;)

Simplify 4(3n + 2b + k)
a. 12nbk
b. 12n + 2bk
c. 12n + 8b + 4k
d. 24bkn

Answers

Answer:

C

Step-by-step explanation:

4(3n+2b+k)

12n+8b+4k

So it would be C.

---

hope it helps

In a certain chemical, the ratio of zinc to copper is 3 to 14. Ajar of the chemical contains
546 grams of copper. How many grams of zinc does it contain?
It contains grams of zinc

Answers

Answer:

Given -

In a certain chemical, the ratio of zinc to copper is 4 to 13.

The chemical contains 546 grams of copper.

Prove  -

How many grams of zinc does it chemical contain.

Answer

suppose that scalar multiple of the  zinc and copper be y .

As given

In a certain chemical, the ratio of zinc to copper is 4 to 13.

The chemical contains 546 grams of copper.

Than equation is

13y = 546

13y = 546

y = 42

Zinc contain in the certain chemical = 4y

                                             = 4 42

                                             = 168 grams

Therefore 168 grams of zinc contain in a certain chemical .Step-by-step explanation:

Help with question 3 please I’ll give brainlest

Answers

Answer: b

Step-by-step explanation: When you rotate it around the axis (think of it as a pole) it will become a cylinder with radius 5

Solve the system of inequalities graphically:
x−2y≤3,3x+4y≥12,x≥0,y≥1

Answers

The solution to the system of inequalities is the region above the x-axis and to the right of the line y = 1, shaded in green.

Given system of inequalities is: x - 2y ≤ 3 ...(1)3x + 4y ≥ 12 ...(2)x ≥ 0 ...(3)y ≥ 1 ...(4)

We graph the lines x - 2y = 3 and 3x + 4y = 12 and shade the appropriate regions.

Let's start with the line x - 2y = 3.

We rewrite this as y = (1/2)x - 3/2 and plot the line as shown below: graph{(1/2)x - 3/2 [-10, 10, -5, 5]}

Now we determine which side of the line we want to shade.

Since the inequality is of the form ≤, we shade below the line y = (1/2)x - 3/2 (including the line itself) as shown below: graph {(1/2)x - 3/2 [-10, 10, -5, 5](-10,-5)--(10,0)}

Next, we graph the line 3x + 4y = 12. We rewrite this as y = (-3/4)x + 3 and plot the line as shown below: graph{(-3/4)x + 3 [-10, 10, -5, 5]}

We determine which side of the line we want to shade. Since the inequality is of the form ≥, we shade above the line y = (-3/4)x + 3 (including the line itself) as shown below: graph{(-3/4)x + 3 [-10, 10, -5, 5](-10,4)--(10,0)}

Finally, we shade the region that satisfies x ≥ 0 and y ≥ 1.

This is the region above the x-axis and to the right of the line y = 1 as shown below: graph{(-3/4)x + 3 [-10, 10, -5, 5](-10,4)--(10,0)(0,1)--(10,1)[above]}

The shaded region is the region that satisfies all three inequalities.

Thus, the solution to the system of inequalities is the region above the x-axis and to the right of the line y = 1, shaded in green.

We graph the lines x - 2y = 3 and 3x + 4y = 12 and shade the appropriate regions.

Let's start with the line x - 2y = 3. We rewrite this as y = (1/2)x - 3/2 and plot the line.

Now we determine which side of the line we want to shade. Since the inequality is of the form ≤, we shade below the line y = (1/2)x - 3/2 (including the line itself).

Next, we graph the line 3x + 4y = 12. We rewrite this as y = (-3/4)x + 3 and plot the line. We determine which side of the line we want to shade.

Since the inequality is of the form ≥, we shade above the line y = (-3/4)x + 3 (including the line itself).

Finally, we shade the region that satisfies x ≥ 0 and y ≥ 1.

This is the region above the x-axis and to the right of the line y = 1. The shaded region is the region that satisfies all three inequalities.

Thus, the solution to the system of inequalities is the region above the x-axis and to the right of the line y = 1, shaded in green.

know more about inequalities

https://brainly.com/question/20383699

#SPJ11

sales tax: 68% shirts: $35 pants: $27 shoes: $44 what is the total cost ​

Answers

all together it will be 33.92

Consider the derivation of the quadratic formula below. What is the missing radicand

in Step 6?

Answers

Answer:

[tex]\frac{b^2 - 4ac}{4a^2}[/tex]

Step-by-step explanation:

Given

See attachment for complete question

Required:

Complete step 6

At step 5, we have:

[tex](x + \frac{b}{2a})^2 = \frac{b^2}{4a^2} - \frac{4ac}{4a^2}[/tex]

Take LCM

[tex](x + \frac{b}{2a})^2 = \frac{b^2 - 4ac}{4a^2}[/tex]

Take square roots of both sides to get step 6

[tex]x + \frac{b}{2a} = \±\sqrt{\frac{b^2 - 4ac}{4a^2}}[/tex]

Hence, the missing radicand is: [tex]\frac{b^2 - 4ac}{4a^2}[/tex]

Other Questions
Given that n is an integer and 0 < 4n Describe the three Cs of first aid. pls help i will mark brainlyest What is The Tequila Worm summarized? Can anyone pls help A plane travels at a speed of 205mph in still air. Flying with a tailwind, the plane is clocked over a distance of 975 miles. Flying against a headwind, it takes 2 hours longer to complete the return trip. What was the wind velocity?no links By 1800 New Orleans was a multiracial society with less rigid stratification than anywhere else on the continent.truefalse The width of a rectangular shed is 8 feet, and its length is 14 feet. Three of these expressions equal the perimeter of the garden, in feet. Which expression does NOT? En la primavera yo siempre ___________(1) con mi madre los sbados por la maana a buscar flores. Yo ____________(2) flores por toda la casa. Casi todas las maanas yo ___________(3) un paseo por el parque con mi hermana. Mi padre siempre me ___________(4) dinero para comprar comida. Algunas veces, nosotros ___________(5) televisin o come (6) tacos. Antes de comer, mis hermanos ___________(7) la mesa y ellos, mis padres y yo vemos (8) televisin.Verbs: comer, poner, dar, salir, ver. Present tense.Will give brainliest help with this please Hessa's position has been redesigned using the 'Job Characteristics Approach. As a result of the redesigning, she commented "I am experiencing a higher level of responsibility for work outcomes. Specify the 'Job Characteristic / Dimension' that has been fulfilled in Hessa's case. [Explanation is not required] Use the editor to format your answer Zafira drinks 4 fluid ounces of orange juice each morning. Which equation can be used to find m, the number of mornings it will take her to drink 4 cups of orange juice. The perimeter of the figure below is 54.9 in. Find the length of the missing side.5.9 in5.9 in?7.3 in7.3 in7.3 in7.3 in7.3 in does any one else no what robsten is guess right ill give u brainllest Advantages of Internet surveys over e-mail surveys include which of the following? Select one: a. Graphs, images, animations, and links to other Web pages may be integrated into or around the survey. b. It is possible to validate responses as they are entered. c. Skip patterns can be programmed and performed automatically. d. Layout can be adjusted to fit questions and answers on the same screen e. All of these answers are correct plzzzzzzz helpppppppp Write a function addElements which performs an addition operation on the elements in a vector if their indices are between min_index and max_index. Function Specifications: o The function name: addElements o The function parameters in this order: vector vect: a vector of integers int min_index: Minimum range of the indices of the vector int max_index: Maximum range of the indices of the vector o The function returns an integer depending on the following conditions: - It returns the sum of all elements in the vector(inclusive of min_index and max_index) It returns - 1 if min_index is greater than max_index - It returns -2 if either or both min_index and max_index exceed the bounds of the vector In order to achieve the purpose of delegation, controlling tasks, and improving decision-making, Sundial, Inc. decides to decentralize and introduce a Management Control System. As a new assignment, y Identify the 19th-20th century art movement that embraced the machine and industrial elements and stemmed from art movements such as Cubism. A. Arts and CraftsB. Art NouveauC. Art DecoD. Neoclassical what fraction of an hour is 15 minutes pls help