If the answer isn’t an integer express in simplest radical form

If The Answer Isnt An Integer Express In Simplest Radical Form

Answers

Answer 1

Answer:

[tex]x = \frac{20}{ \sqrt{3} } \\ y = \frac{40}{ \sqrt{3} } [/tex]

Step-by-step explanation:

[tex]for \: \: x \\ \tan(60) = \frac{20}{x} \\ \sqrt{3} = \frac{20}{x} \\ x = \frac{20}{ \sqrt{3} } \\ \\ for \: y \: \\ \sin(60) = \frac{20}{y} \\ \frac{ \sqrt{3} }{2} = \frac{20}{y} \\ \sqrt{3} \: y = 20 \times 2 \\ y = \frac{40}{ \sqrt{3} } [/tex]

I hope that is useful for you :)


Related Questions

A particular manufacturing design requires a shaft with a diameter of 20.000 mm, but shafts with diameters between 19.987 mm and 20.013 mm are acceptable. The manufacturing process yields shafts with diameters normally distributed, with a mean of 20.003 mm and a standard deviation of 0.005 mm. Complete parts (a) through (d) below. a. For this process, what is the proportion of shafts with a diameter between 19.987 mm and 20.000 mm?

Answers

Using area under normal curve and z-score, approximately 21.32% of shafts have a diameter between 19.987 mm and 20.000 mm.

What is the proportion of shafts with a diameter between 19.987mm and 20.000mm?

To find the proportion of shafts with a diameter between 19.987 mm and 20.000 mm, we need to calculate the probability that a randomly selected shaft falls within this range.

Given that the diameters of the shafts are normally distributed with a mean of 20.003 mm and a standard deviation of 0.005 mm, we can use the properties of the normal distribution to determine the desired proportion.

To calculate this proportion, we need to find the area under the normal curve between the values of 19.987 mm and 20.000 mm.

Let's denote the random variable X as the diameter of the shafts. We want to find P(19.987 ≤ X ≤ 20.000).

To do this, we can standardize the values by converting them to z-scores using the formula:

z = (x - μ) / σ

where x is the value, μ is the mean, and σ is the standard deviation.

For 19.987 mm:

z₁ = (19.987 - 20.003) / 0.005

For 20.000 mm:

z₂ = (20.000 - 20.003) / 0.005

We can then use a standard normal distribution table or calculator to find the corresponding probabilities associated with these z-scores.

Using a standard normal distribution table, we find that P(Z ≤ z₁) ≈ 0.2119 and P(Z ≤ z₂) ≈ 0.4251.

To find the proportion of shafts between 19.987 mm and 20.000 mm, we subtract the probabilities:

P(19.987 ≤ X ≤ 20.000) = P(Z ≤ z₂) - P(Z ≤ z₁) ≈ 0.4251 - 0.2119

P(19.987 ≤ X ≤ 20.000) ≈ 0.2132

Learn more on area under normal curve here;

https://brainly.com/question/4079902

#SPJ4

This equation shows how the time required to ring up a customer is related to the number of
items being purchased.
t = 3p + 11
The variable p represents the number of items being purchased t =3p + 11 The variable p represents the number of items being purchased, and the variable t represents the time required to ring up the customer. How long does it take to ring up a customer with 3 items?

Answers

Answer:

it is x=4÷2

Step-by-step explanation:

I just known the answer who cares about the steps

The series n=0 to infinity 2^n 3^n /n! is (a) divergent by the root test (b) a series where the ratio test is inconclusive (c) divergent by ratio test (d) convergent by ratio test and its sum is 0 (e) convergent by ratio test and its sum is e^6.

Answers

The series n=0 to infinity [tex]2^{n}[/tex] [tex]3^{n}[/tex] /n! is (e) convergent by ratio test and its sum is e⁶.

How to calculate the value

The given series can be written as:

S = Σ(n=0 to ∞) (2ⁿ * 3ⁿ) / n!

In order to determine if the series is convergent, let's apply the ratio test. The ratio test states that if the limit of the absolute value of the ratio of consecutive terms is less than 1, then the series converges. Mathematically, this can be expressed as:

lim(n→∞) |(a(n+1) / an)| < 1

Taking the ratio of a(n+1) to an is 6 / (n+1)

Now, let's take the limit as n approaches infinity:

lim(n→∞) |(6 / (n+1))| = 0

Learn more about series on

https://brainly.com/question/26263191

#SPJ4

Does anyone know how to do this because im confused.

Answers

Answer:

no but choose b if u don't know it it usually works for me sorry if I don't help :(

Answer:

y=-3x is the bottom right one

y=4x is the top middle

y=x-3 is the top right one

Step-by-step explanation:

What is the product of 2x + 3 and 4x^2 - 5x + 6

Answers

Answer:

8

x

3

+

2

x

2

3

x

+

18

Step-by-step explanation:

simply the answer thought bc i didn't simplify

Two thirds of the money in my pocket is 50 cents. a, what is one third of the money in my pocket​

Answers

Answer:

25 cents

Step-by-step explanation:

1.) Set up an equation you can solve from the wording of the question:

(2/3)*m = 50, where "m" represents the money in your pocket.

2.) Solve for that equation:

m = 50*(3/2) = 150/2 = 75, so now you know the money you have in your pocket is 75 cents

3.) Multiply the money you have in your pocket by 1/3 to find 1/3 of the money you have in your pocket:

75*(1/3) = 25

Help please :) (asap)

Answers

x^2 - x - 6= 0

(x - 3) ( x + 2) = 0

Equating

x - 3 = 0

x = 3

x+ 2= 0

x = -2

Answer: x - 6

Step-by-step explanation:

Fill in the blank. The only solution of the initial-value problem y" + x2y = 0, y(0) = 0, y'(0) = 0 is y(x) = 0

Answers

The only solution of the initial-value problem y" + x^2y = 0, y(0) = 0, y'(0) = 0 is y(x) = 0, where y(x) represents the unknown function and x represents the independent variable.

To determine the solution of the initial-value problem, we consider the given second-order linear homogeneous differential equation y" + x^2y = 0 along with the initial conditions y(0) = 0 and y'(0) = 0.

First, we solve the differential equation by assuming a solution of the form y(x) = Ax^n, where A is a constant and n is an exponent to be determined. Substituting this into the differential equation, we obtain the characteristic equation n(n-1) + x^2 = 0.

Solving the characteristic equation, we find that the roots are n = 0, which corresponds to the solution y(x) = A, and n = 1, which corresponds to the solution y(x) = Bx. However, when we apply the initial conditions y(0) = 0 and y'(0) = 0, we find that both solutions are equal to zero.

Therefore, the only solution that satisfies both the differential equation and the initial conditions is y(x) = 0, indicating that the function y(x) is identically zero for all values of x.

Learn more about differential equation here:

https://brainly.com/question/32514740

#SPJ11

A cone has a base diameter of 20 centimeters. Its height is 30 centimeters. Calculate the volume in cubic centimeters to the nearest tenth

Answers

Answer:

The volume of the cone is 3140cm³

Step-by-step explanation:

Volume of come = 1/3 × πr²h

r = diameter/2 = 20/2 = 10cm

h = 30cm

π = 22/7

Volume = 1/3 × 22/7 × 10² × 30

Volume = 1/3 × 22/7 × 100 × 30

Volume = 3142.86cm³

Volume = 3140cm³

What is the measure of angle B in the triangle?



Enter your answer in the box.

m∠B=
°



A triangle labeled ABC with angle A as one hundred twenty degrees, angle B as X degrees and angle C as parenthesis X plus sixteen parenthesis degrees

Answers

Step-by-step explanation:

What is the measure of angle B in the triangle?

Enter your answer in the box.

m∠B=

°

A triangle labeled ABC with angle A as one hundred twenty degrees, angle B as X degrees and angle C as parenthesis X plus sixteen parenthesis degrees

the answer in the photo

Ice cream consumption was measured over 30 four-week periods from March 18, 1951 to July 11, 1953. The purpose of the study was to determine if ice cream consumption depends on the variables price, income, or temperature. For this HW question, we want to see if the temperature (temp) affects the ice cream consumption (IC). Attached is the output from the simple linear regression of temperature on ice cream consumption. What percentage of change in ice cream consumption can be explained by temperature

Answers

Answer:

Log Linear Model : log y = a + bx. Slope 'b' represent % change in ice cream sale, due to unit change in temperature.

Step-by-step explanation:

Assuming a log linear regression model, with dependent variable 'y' ie Ice cream sale & independent variable 'x' ie temperature sale.

In form of regression, log y = a + bx  {a = intercept}. Here, slope b represents response of one unit change (Increase) in temperature leading to b% change (ie rise) in ice cream consumption. Slope coefficient 'b' is likely to be positive, as temperature & ice cream sale are likely to be directly related, higher temperature (hot weather) imply high ice cream sale, & vice versa less sales for lower temperature (cool weather)

Given f(x) and g(x) = kf(x), use the graph to determine the value of k.

Two lines labeled f of x and g of x. Line f of x passes through points negative 4, 0 and negative 3, 1. Line g of x passes through points negative 4, 0 and negative 3, negative 3.

A. 3
B. one third
C. negative one third
D. −3

Answers

Answer:

From the given information, we can see that when x = -3, f(x) = 1 and g(x) = -3. Since g(x) = kf(x), we can substitute the values of f(x) and g(x) to solve for k: g(x) = kf(x) -3 = k(1) k = -3 So the value of k is -3, which corresponds to answer choice D.

Let 8 denote the minimum degree of any vertex of a given graph, and let A denote the maximum degree of any vertex in the graph. Suppose you know that a certain graph has seven vertices, and that 8 = 3 and Δ= 5. (a) Show that this graph must contain at least 12 edges. (b) What is the largest number of edges possible in this graph?

Answers

For a graph with seven vertices, a minimum degree of 3 (8 = 3), and a maximum degree of 5 (Δ = 5), it can be shown that the graph must contain at least 12 edges. The largest number of edges possible in this graph is determined by the Handshaking Lemma, which states that the sum of the degrees of all vertices in a graph is equal to twice the number of edges.

(a) To show that the graph must contain at least 12 edges, we can use the Handshaking Lemma. The sum of the degrees of all vertices in the graph is equal to twice the number of edges. In this case, with seven vertices and a minimum degree of 3, the sum of the degrees is at least 7 * 3 = 21. Therefore, the minimum number of edges is 21/2 = 10.5, which rounds up to 11. So the graph must contain at least 11 edges, but since the number of edges must be an integer, it must be at least 12.

(b) The largest number of edges possible in this graph can be determined by considering the maximum degree. In this case, the maximum degree is 5. Since the sum of the degrees of all vertices is equal to twice the number of edges, the sum of the degrees is at most 7 * 5 = 35. Therefore, the largest possible number of edges is 35/2 = 17.5, which rounds down to 17. So the largest number of edges possible in this graph is 17.

Learn more about vertices here:

https://brainly.com/question/29154919

#SPJ11

Find the volume of this triangular prism.

Answers

Answer:

v = 9x9x0.5x5 = 202.5 ft^3

Step-by-step explanation:

(ill give 25) let r be the region enclosed by the y-axis, the line y = 2, the line y = 3, and the curve =. a solid is generated by rotating R about the y-axis, what is the volume of the solid?

Answers

That’s a 70 degree angle

What is the base area of the cone?


15 m²
25 m²
45 m²
125 m²

Answers

125 ^2 !!!!!!!!!!!!!!!!!!

Answer:

45 m^2

Step-by-step explanation:




1 (a) Find the Laurent series of the function (22-9)(2+3) centered at z = −3. 1 (b) Evaluate ſc[−3,3] (z²−9)(z+3) dz.

Answers

The simplification based on Laurent series of the function (22-9)(2+3) centered at z = −3

[((1/4)(3)⁴ + (2/3)(3)³ + (9/2)(3)² - 27(3))] - [((1/4)(-3)⁴ + (2/3)(-3)³ + (9/2)(-3)² - 27(-3))]

The given problem involves finding the Laurent series of a function centered at z = -3 and evaluating the integral of another function over a specific interval. The Laurent series simplifies to a constant term of 65.

(a) To find the Laurent series of the function (22-9)(2+3) centered at z = −3, we can expand the function in powers of (z + 3):

(22-9)(2+3) = (13)(5) = 65

Since there are no negative powers of (z + 3), the Laurent series of the function is simply the constant term:

f(z) = 65

(b) To evaluate the integral ſc[−3,3] (z²−9)(z+3) dz, we can first simplify the integrand:

(z² - 9)(z + 3) = (z - 3)(z + 3)(z + 3) = (z - 3)(z + 3)²

Now, let's integrate the simplified expression:

∫[(z - 3)(z + 3)²] dz

Expanding the expression:

∫[z³ + 6z² + 9z - 27] dz

Integrating each term:

(1/4)z⁴ + (2/3)z³ + (9/2)z² - 27z

Now, we can evaluate the integral over the given interval [−3, 3]:

∫[−3,3] (z²−9)(z+3) dz = [((1/4)z⁴ + (2/3)z³ + (9/2)z² - 27z)] evaluated from z = -3 to z = 3

Substituting the upper and lower limits into the expression and simplifying, we get:

[((1/4)(3)⁴ + (2/3)(3)³ + (9/2)(3)² - 27(3))] - [((1/4)(-3)⁴ + (2/3)(-3)³ + (9/2)(-3)² - 27(-3))]

To know more about Laurent series:

https://brainly.com/question/32706315
#SPJ11

Plzz help it do today

Answers

Answer:

i think it is A CiNiyah

Step-by-step explanation:

(x+4)² + (y-6)² = 48

Answers

Answer:

Step-by-step explanation:

This is the equation of a circle with center at (-4, 6) and radius 4√3.

Number of Jobs A sociologist found that in a sample of 55 retired men, the average number of jobs they had during their lifetimes was 7.1. The population standard deviation is 2.1
.(a) Find the best point estimate of the mean.
The best point estimate of the mean is 7.1
(b) Find the 95% confidence interval of the mean number of jobs. Round intermediate and final answers to one decimal place.
<<μ

Answers

The 95% confidence interval of the mean number of jobs is (6.7, 7.5).

Given that, a sociologist found that in a sample of 55 retired men, the average number of jobs they had during their lifetimes was 7.1 and the population standard deviation is 2.1.

The best point estimate of the mean is the sample mean.

Hence the best point estimate of the mean is 7.1.

Therefore, the 95% confidence interval of the mean number of jobs is (6.7, 7.5).

Hence the required solution.

To know more about confidence interval visit:

https://brainly.com/question/20309162

#SPJ11

How to write 8,99,999 in international system. I want this number but in words of international system

Answers

8,99,999 in international system:-

899,999= Eight hundred ninety-nine thousand nine hundred ninety-nine

1
4
2
D
3
In the diagram above, Z4 = 35°.
Find the measure of Z2.
Z2 = [?]

Answers

Answer:

35°

Step-by-step explanation:

Due to the parallelism, angle2=angle4

Which sets of ordered pairs represent functions from A to B?

A = {1, 2, 3, 4) and B = {-2, -1, 0, 1, 2)

{(1, -1), (3, 2), (2, -2), (4, 0), (2, 1)) {(1, 2), (4, 0), (2, 1)) {(1, 1), (2, -2), (3, 0), (4, 2)} {(1, 0), (2, 0), (3, 0), (4, 0))

Answers

The set of ordered pairs that represents a function from A to B is {(1, -1), (3, 2), (4, 0), (2, 1)}. A function from A to B is a relation that assigns a unique element from B to each element in A.

In order for a set of ordered pairs to represent a function, each element in A must have exactly one corresponding element in B.

Let's analyze each set of ordered pairs:

1. {(1, -1), (3, 2), (2, -2), (4, 0), (2, 1)}: This set is not a function because the element 2 in A is assigned two different elements (-2 and 1) in B. Each element in A should have a unique corresponding element in B.

2. {(1, 2), (4, 0), (2, 1)}: This set is a function because each element in A is assigned a unique element in B.

3. {(1, 1), (2, -2), (3, 0), (4, 2)}: This set is a function because each element in A is assigned a unique element in B.

4. {(1, 0), (2, 0), (3, 0), (4, 0)}: This set is a function because each elementin A is assigned a unique element (0) in B.

Based on the analysis, the set of ordered pairs that represents a function from A to B is {(1, -1), (3, 2), (4, 0), (2, 1)}.

Learn more about set here: https://brainly.com/question/7196375

#SPJ11

Please help no links I WILL GIVE YOU A BRAINLIST

Answers

Answer:

1.) it is the same way as subtracting a fraction be cause a pizza is cut into 8 so it will be 1/8th of each slice if some one ate a slice of pizza

Step-by-step explanation:

A candle is formed in the shape of a cylinder. It has a diameter of 4 inches a d a height if 5 inches. Which measurement is closest to the total surface area of the candle in square inches

Answers

The closest measurement in square inches to the overall surface area of the candle is 87.92 square inches.

To find the total surface area of the candle, we need to calculate the lateral surface area (excluding the top and bottom) and then add the areas of the two circular bases.

1. Lateral Surface Area:

The formula for the lateral surface area of a cylinder is given by A = 2πrh, where r is the radius of the base and h is the height of the cylinder.

Given that the diameter of the candle is 4 inches, we can calculate the radius by dividing the diameter by 2:

Radius (r) = 4 inches / 2 = 2 inches

Height (h) = 5 inches

Using the formula, we can calculate the lateral surface area:

Lateral Surface Area = 2π(2 inches)(5 inches) = 20π square inches

2. Base Area:

The formula for the area of a circle is given by A = πr^2, where r is the radius of the circle.

Using the radius calculated earlier (r = 2 inches), we can calculate the area of each circular base:

Base Area = π(2 inches)^2 = 4π square inches

3. Total Surface Area:

To find the total surface area, we add the lateral surface area and the areas of the two circular bases:

Total Surface Area = Lateral Surface Area + 2(Base Area)

Total Surface Area = 20π + 2(4π) = 20π + 8π = 28π square inches

Approximating the value of π to 3.14, we can calculate the approximate total surface area:

Total Surface Area ≈ 28(3.14) = 87.92 square inches

Therefore, the closest measurement to the total surface area of the candle in square inches is 87.92 square inches.

For more such questions on measurement, click on:

https://brainly.com/question/777464

#SPJ8

help please important!!!!^click picture

Answers

an integer is a whole number
so 26.5 is equivalent

An airplane is on a heading of 170 degrees to a vacation island, and is cruising at 250km/hr. It is encountering a wind blowing from the south/west at 50 km/hr.

A. Draw a "logical" vector diagram of "our" flight to the "secret" island.

B. Determine the aircraft’s ground velocity (magnitude and direction and standard bearing). Round your final answer to 1 decimal.

C. If the entire flight took about 5 hours, how far is the vacation island from the airport of departure?

Answers

A) Logical vector diagram of the flight is drawn below. B) The aircraft's ground velocity is approximately 260.2 km/hr at a bearing of -153.7°. C) The vacation island is approximately 1301 kilometers from the airport of departure.

A.  a logical vector diagram of the flight is given in image.

B. To determine the aircraft's ground velocity, we need to find the resultant vector of the aircraft's velocity and the wind vector. We can use vector addition to calculate this:

Aircraft's velocity = 250 km/hr at a heading of 170°

Wind velocity = 50 km/hr at a heading of 270° (since it's blowing from the south/west)

To add these vectors, we need to resolve them into their horizontal (x) and vertical (y) components:

Aircraft's velocity:

[tex]V_x[/tex] = 250 km/hr * cos(170°)

[tex]V_{y}[/tex] = 250 km/hr * sin(170°)

Wind velocity:

[tex]V_x[/tex]_wind = 50 km/hr * cos(270°)

[tex]V_y[/tex]_wind = 50 km/hr * sin(270°)

Now, we can add the horizontal and vertical components separately:

[tex]V_{x} total = V_x + V_{x}wind\\V_{y} total = V_y + V_{y}wind[/tex]

To find the magnitude and direction of the resultant vector, we can use the Pythagorean theorem and trigonometry:

Magnitude of the resultant vector (ground velocity):

[tex]V_{total} = \sqrt{V_x total^2 + V_y total^2}[/tex]

Direction of the resultant vector:

[tex]\theta = tan^{-1} 2(V_y total, V_xtotal)[/tex]

Let's calculate the values:

[tex]V_x[/tex] = 250 km/hr * cos(170°) ≈ -235.83 km/hr

[tex]V_y[/tex] = 250 km/hr * sin(170°) ≈ -62.85 km/hr

[tex]V_x[/tex]_wind = 50 km/hr * cos(270°) = 0 km/hr

[tex]V_y[/tex]_wind = 50 km/hr * sin(270°) ≈ -50 km/hr

[tex]V_x[/tex]_total = -235.83 km/hr + 0 km/hr = -235.83 km/hr

[tex]V_y[/tex]_total = -62.85 km/hr + (-50 km/hr) = -112.85 km/hr

[tex]V_{total}[/tex] =  [tex]\sqrt{((-235.83 km/hr)^2 + (-112.85 km/hr)^2) }[/tex] ≈ 260.2 km/hr

θ = [tex]tan^{-1} 2(-112.85 km/hr, -235.83 km/hr)[/tex] ≈ -153.7°

The aircraft's ground velocity is approximately 260.2 km/hr at a bearing of -153.7°.

C. If the entire flight took about 5 hours, we can calculate the distance traveled by multiplying the ground velocity by the time:

Distance = Velocity * Time

Distance = 260.2 km/hr * 5 hours = 1301 km

The vacation island is approximately 1301 kilometers from the airport of departure.

Read more about vector Diagram at;

brainly.com/question/3184914

#SPJ4

Find the difference.

(−x2+9xy)−(x2+6xy−8y2)

Answers

Answer:

-2[tex]x^{2}[/tex]+3xy+8[tex]y^{2}[/tex]

Step-by-step explanation:

Evaluate the expression 8.2(5)^2

Answers

Answer:

205

Step-by-step explanation:

5^2 = 25

8.2 * 25 = 205

wth ..

Answer:

205 hope this helps

Step-by-step explanation:

5^2= 25

8.2×25= 205 hope

Find the minimum of the Brown's badly scaled function using Powell's method. f(x) = (x₁ - 10^6)² + (x₂ − 2 × 10^-6)² + (x₁x₂ - 2)²

Answers

The minimum of Brown's badly scaled function, f(x) = (x₁ - 10^6)² + (x₂ − 2 × 10^-6)² + (x₁x₂ - 2)², can be found using Powell's method.

Powell's method is an optimization algorithm used to find the minimum of a function. It is an iterative method that searches for the minimum by successively approximating the direction of the minimum along each coordinate axis.

To apply Powell's method to find the minimum of Brown's badly scaled function, we start with an initial guess for the minimum point. Then, we iteratively update the guess by evaluating the function at different points and adjusting the guess based on the obtained results.

The iterative process continues until a convergence criterion is met, indicating that the minimum has been sufficiently approximated. The final guess represents the minimum point of the function.

By applying Powell's method to Brown's badly scaled function, we can determine the coordinates of the minimum point, which correspond to the values of x₁ and x₂ that minimize the function. The specific values of x₁ and x₂ will depend on the initial guess and the convergence criteria used in the optimization process.

Learn more about coordinates here:

https://brainly.com/question/22261383

#SPJ11

Other Questions
please helpIf 2500 square feet of grass supplies enough oxygen for afamily of four, how much grass is needed to supply oxygen for a familyof five? What is the value of "w" ? 6Which issue first led to war between Rome and Carhage?A the ability to get whear from EgyptB the right to start colonies in Spainthe use of chariots in warfarecontrol of trade in the MediterraneanPlssss I give the brainliest Please help Ill give brainliest PLEASE SOMEONE HELLPPP i actually need it helppppppppppppppppp Find mP. explanation is optional Peterson Company's general ledger shows a cash balance of $7,420 on May 31. May cash receipts of $1,290, included in the general ledger balance, are placed in the night depository at the bank on May 31 and processed by the bank on June 1. The bank statement dated May 31 shows an NSF check for $170 and a service fee of $60. The bank processes all checks written by the company by May 31 and lists them on the bank statement, except for one check totaling $1,900. The bank statement shows a balance of $7,800 on May 31. Prepare a bank reconciliation to calculate the correct ending balance of cash on May 31. as with simple linear regression, we desire the residuals to (select all that apply) What is the solution to the equation fraction 4 over 5 n minus fraction 3 over 5 equals fraction 1 over 5 n? (1 point) 7% of all Americans live in poverty. If 32 Americans are randomly selected and this event can be modeled using a binomial distribution rounded to 4 decimal places, find the probability that a. Exactly 2 of them live in poverty, b. At most 1 of them live in poverty. e. At least 1 of them live in poverty. d. Between 1 and 5 (including 1 and 5) of them live in poverty. Rcrivez le texte en choisissant pourchaque verbe de parole celui qui convient le mieux.Conjuguez-les au pass simple de l'indicatif.Voil qui est trange, (rtorquer, murmurer, demander) M. Dax.trange , (commencer, dire, rpter) M. de Marquet.M. Stangerson, avec un ple et glac sourire, (dire, inter-roger, gmir) :- Ce n'est point de ce ct, monsieur, que vous trouverezle mobile du crime.M. Dax:- En tout cas, (murmurer, faire, bgayer)-il d'une voix impa-tiente, le mobile n'est pas le vol !-Oh! que nous en sommes srs ! (hsiter, rtorquer, s'crier)le juge d'instruction. The quality control manager at a factory records the number of equipment.a. Englishb. Businessc. Engineeringd. Mathematics The Hawaiian Islands, located in the middle of the Pacific Tectonic Plate, werecreated by volcanismA. at a transform boundaryB. due to a meteorite impactC. near an ocean-ocean convergent boundaryD. near an ocean-continental convergent boundaryE. near a continental-continental convergent boundaryF. over a hotspot or mantle plume Suppose the risk-free return is 6.2% and the market portfolio has an expected return of 8.1% and a standard deviation of 16%. Johnson & Johnson Corporation stock has a beta of 0.31.What is its expected return?enter your response here%. P purchases a motor car from Q whose cash price is $. 56,000 on January 1, 1995. $. 15,000 is paid at signing of the contract and the balance is to be paid in three equal annual instalments of $. 15,000 each. The rate of interest is 5% per annum. Calculate the amount of interest included in each instalment. The center is (3,-2), and a point in the circle is (23, 19) define a scheme procedure, named (heap-insert f x h), which adds element x to heap h using the first-order relation f to determine which element belongs at the root of each (sub)tree. solve number 6. please dont guess The proportion of supermarket customers who do not buy store-brand products is to be estimated. Suppose 500 customers are selected from the roughly 20,000 customers who shop at the stores citywide. The sample proportion of supermarket customers who do not buy store-brand products equals 33.5%. Which value(s) can be labeled as statistic(s)?