Answer:
C
Step-by-step explanation:
y=5x reads "y equals (5 times x)", which we can rephrase to "the value of y is 5 times the value of x"
y=x+5 reads "y equals (x plus 5)", which we can rephrase to "the value of y is 5 more than the value of x".
Ergo, answer C is what we're looking for.
Answer: C
Step-by-step explanation:
in y=5x, we can see a 5 placed in front of x. If there is no addition, subtraction, or division sign between a number and a variable, it always means it's multiplication.
We know now that this is 5 times x.
In y=x+5, we see that 5 is being added to x. Therefore, y is 5 more than x.
So there you have it.
Which relations represent functions? Choose all that apply.
{(-2, 6), (-5, -1), (3, 7), (-5, 0)}
help me please-
Answer:
its 5,1
Step-by-step explanation:
just took the test
1. Claretta works part-time at a coffee shop. Her
weekly paychecks in March are: $87.00, $96.00,
$84.25, and $100.75. Find the median of her
paychecks.
Let f(x) = (x + 7)^2 Find a domain on which f is one-to-one and non-decreasing. Find the inverse of f restricted to this domain
The function f(x) = (x + 7)^2 is one-to-one and non-decreasing for any domain on the real numbers. The inverse of f(x) restricted to this domain is y = √x - 7.
To find a domain on which the function f(x) = (x + 7)^2 is one-to-one and non-decreasing, we need to determine where the function is strictly increasing or non-decreasing and has a one-to-one correspondence.
First, let's examine the graph of f(x) = (x + 7)^2 to understand its behavior. The function is a parabola that opens upward, centered at x = -7, and the vertex is the lowest point on the graph.
Since the vertex is the lowest point and the parabola opens upward, the function is non-decreasing for all x-values. Therefore, the function is non-decreasing over its entire domain.
To find a domain on which the function is one-to-one, we observe that the function is not symmetric about the y-axis. Hence, the domain can be any subset of the real numbers.
Now, let's find the inverse of f(x) restricted to this domain. Since f(x) is non-decreasing, the inverse will also be non-decreasing. The inverse function can be found by interchanging the roles of x and y in the original equation and solving for y.
Let's proceed with finding the inverse:
Start with the equation f(x) = (x + 7)^2.
Interchange x and y: x = (y + 7)^2.
Solve for y:
Take the square root of both sides: √x = y + 7.
Subtract 7 from both sides: y = √x - 7.
The inverse function of f(x) restricted to any domain on which it is one-to-one and non-decreasing is given by y = √x - 7.
Note that the domain can be any subset of the non-negative real numbers, since the square root function is defined only for non-negative values.
In summary, the function f(x) = (x + 7)^2 is one-to-one and non-decreasing for any domain on the real numbers. The inverse of f(x) restricted to this domain is y = √x - 7.
Learn more about real numbers here
https://brainly.com/question/155227
#SPJ11
Ben wants to join a fitness club. The fitness club charges an initial membership fee of $49.50 and a monthly fee of 17.50. Part B ben's company will pay $300.00 each year toward his fitness club membership. Ben thinks he will have to pay $40.50 for his membership his first year. Is he correct?
Answer:
no he is not correct
Step-by-step explanation:
def simulate(xk, yk, models): model = linearregression() (x, y) predictions = [model.predict(xk) for model in models]
The code simulates predictions using linear regression models on input data (xk, yk) and stores the predictions in the list "predictions".
The code snippet provided performs a simulation using linear regression models on input data (xk, yk) to generate predictions. Here is a step-by-step explanation:
Initialize a list called "predictions" to store the predicted values.
Iterate over the list of models. For each model:
Use the model to predict the values of y for the given input data xk. Append the predicted values to the "predictions" list.
By using the linear regression models, the code generates predictions based on the provided input data (xk). Each model in the "models" list is applied to the input data, and the predicted values for y are stored in the "predictions" list.
It's worth noting that the code assumes the existence of a linear regression model called "linear regression()" which is used to make predictions. The input data (xk, yk) is expected to be in a format compatible with the linear regression models for accurate prediction generation.
LEARN MORE ABOUT linear regression here: brainly.com/question/32505018
#SPJ11
The formula to convert Celcius to Fahrenheit is F=\frac{9}{5}C+32F=
5
9
C+32. If the temperature is -22°F−22°F what is the temperature in Celcius.
Answer:
-30C - -5.56C
Calculate the perimeter of the composite figure. Round your answer to the nearest hundredth. Use 3.14 for $\pi$ .
th sides are 8 and 10
1. Perimeter is 3 + 3 +3 +4 +5 = 18 feet
Area = 3*3 = 9, 1/2*3*4 = 6, 9 + 6 =15 square feet
2. perimeter = 2.5 +2.5+ 2.5+2.5+0.5+0.5 = 11 meters
Area = 3*.5 = 1.5, 3*2=6, 6+1.5 = 7.5 square meters
3. perimeter = 3.14*2*3 = 18.84 +8 = 26.8 inches
Area = 6*4 = 24 + 3.14*3^2 = 28.26 = 28.26 +24 = 52.3 inches
4. surface area = 2*π*6*20+2*π*6^2= 980.2 yards
Volume = π*6^2*20 = 2261.9 cubic yards
5.surface area = 2*(9*7+2*2+2*9) = 190 cm
Volume = 2*7*9 = 126 cubic cm
6. surface area = 2*(11*11+11*11+11*11) = 726 mm
Volume = 11 *11*11 = 1331 cubic cm
Find the Wronskian for the set of functions (3x^2, e^x, xe^x}, then determine if they are linearly dependent or independent.
The Wronskian for the set of functions (3[tex]x^2[/tex], [tex]e^x[/tex], x[tex]e^x[/tex]) is W(0) = 1 and the set of functions (3[tex]x^2[/tex], [tex]e^x[/tex], x[tex]e^x[/tex]) are linearly independent.
To find the Wronskian for the set of functions (3[tex]x^2[/tex], [tex]e^x[/tex], x[tex]e^x[/tex]) and determine if they are linearly dependent or independent, we calculate the determinant of the matrix formed by taking the derivatives of these functions and evaluating them at a specific point.
The Wronskian is a determinant that helps determine if a set of functions is linearly dependent or independent.
For the given set of functions (3[tex]x^2[/tex], [tex]e^x[/tex], x[tex]e^x[/tex]), we need to calculate the Wronskian.
First, we take the derivatives of the functions:
f₁(x) = 3[tex]x^2[/tex]
f₂(x) = [tex]e^x[/tex]
f₃(x) = x[tex]e^x[/tex]
Taking the first derivatives, we get:
f₁'(x) = 6x
f₂'(x) = [tex]e^x[/tex]
f₃'(x) = [tex]e^x[/tex] + x[tex]e^x[/tex]
Next, we form a matrix with these derivatives:
| 6x [tex]e^x[/tex] [tex]e^x[/tex] + x[tex]e^x[/tex] |
To calculate the Wronskian, we evaluate this matrix at a specific point, let's say x = 0, and take the determinant:
W(0) = | 6(0) [tex]e^0[/tex] [tex]e^0[/tex] + 0[tex]e^0[/tex] |
| 0 1 1 |
| 1 1 1 |
Simplifying, we find:
W(0) = | 0 1 1 |
| 1 1 1 |
| 1 1 1 |
Calculating the determinant, we have:
W(0) = (0)(1)(1) + (1)(1)(1) + (1)(1)(1) - (1)(1)(1) - (1)(1)(0) - (1)(1)(1) = 1
Since the Wronskian is non-zero (W(0) ≠ 0), the set of functions (3[tex]x^2[/tex], [tex]e^x[/tex], x[tex]e^x[/tex]) are linearly independent.
Learn more about Derivatives here:
https://brainly.com/question/30401596
#SPJ11
99999 help me plz plz plz plz
Answer:
hi
Step-by-step explanation:
i think 10 in
hope it helps
Answer:
10
Step-by-step explanation:
The triangles are the same size, and if you look at the picture, you can see that MN and QR are the same, making QR 10 in.
Worth 50 points
The table shows the inputs and corresponding outputs for the function f(x) = StartFraction 1 Over 8 EndFraction(2)x. A 2-column table with 5 rows. Column 1 is labeled x with entries 0, 2, 4, 6, 8. Column 2 is labeled f (x) with entries StartFraction 1 Over 8 EndFraction, one-half, 2, 8, 32. Find the following values of the function. f -1 (one-half) = f -1 (8) =
Answer:2,6
Step-by-step explanation:Edge2021
Answer
2,6
Step-by-step explanation:
Let S = {3,4,5,6,7,8,9) be a sample space such that the following are true. Use the information to answer the questions. E = (8,9) F = {7,8) G = {4,6,9) a) Are E and F mutually exclusive? Ο Nο Yes O Cannot be determined b) Are F and G mutually exclusive? Ο Nο Yes Cannot be determined.
(a) E and F are not mutually exclusive due to the overlapping value of 8. So the answer is No or option A.
(b) F and G are mutually exclusive since they have no common outcomes. So the answer is No or option A.
a) E and F are not mutually exclusive. To be mutually exclusive, two events cannot occur simultaneously. In this case, both E and F have an overlapping value of 8. The interval (8,9) is included in both E and F, indicating that there is a common outcome (8) between the two events.
Therefore, E and F are not mutually exclusive.
b) F and G are mutually exclusive. In order for two events to be mutually exclusive, they must have no common outcomes. Looking at the intervals (7,8) and (4,6,9), there is no overlapping value between F and G. F includes the value 7, which is not present in G, and G includes the values 4, 6, and 9, which are not present in F.
Therefore, there are no common outcomes between F and G, making them mutually exclusive.
In summary, E and F are not mutually exclusive due to the overlapping value of 8, while F and G are mutually exclusive since they have no common outcomes.
Learn more about Mutually Exclusive:
https://brainly.com/question/12961938
#SPJ4
helppppppppppp meeeeeeeeeee
Answer:
330
Step-by-step explanation:
Answer:
335.5
Step-by-step explanation:
The areas of two squares
in the model are given.
Find the area of the
third square.
625 units2
400
units2
Answer:
225 u²
Step-by-step explanation:
The area of the larger square is 625 u². We know that area of square is the square of side. So ,
⇒ a² = 625 u²
⇒ a = √625 u²
⇒ a = 25 u .
Similarly finding the side of second square as ,
⇒ a'² = 400 u²
⇒ a' = √400 u²
⇒ a' = 20 u
If we see these are the hypontenuse and base of a right a Angled triangle formed between the square. The measure of perpendicular will be the side lenght of third square.
⇒ h² = p² + b²
⇒( 25u)² = p² + (20u)²
⇒ p² = 625 - 400 u²
⇒ p² = 225 u²
This p² is only the area of square .
Hence the area of third square is 225 u² with a side lenght of 15 u .Answer:
225 units
Step-by-step explanation:
The term to term rule for a sequence is Multiply by 2 the sequence starts a 2a ___ ___ the total value of the first three terms is 63 work out the total value of the first four terms
Answer:
135
Step-by-step explanation:
The sequence are:
a, 2a, 4a, 8a, 16a.....
the total value of the first three terms is 63
That is,
a + 2a + 4a = 63
7a = 63
a = 63/7
a = 9
work out the total value of the first four terms
First four terms are: a, 2a, 4a, 8a
Where,
First term, a = 9
Second term, 2a = 2*9 = 18
Third term, 4a = 4*9 = 36
Fourth term, 8a = 8*9 = 72
The total value of the first four terms = 9 + 18 + 36 + 72
= 135
The total value of the first four terms = 135
In the process of completing the square, 3x^2+7x-12 becomes x^2+7/4x=4. True or False
Answer: False
Step-by-step explanation:
What is the solution to the equation
Answer:
n=1
Step-by-step explanation:
4/5n-3/5=1/5n
4n/5-3/5=1/5n
4n/5-3/5=n/5
4n-3/5=n/5
4n-3=n
-3=n-4n
-3=-3n
1=n
n=1
Answer:
n=1
isolate the n's on one side and isolate the 3/5 to the other
4/5n-1/5n = 3/5
3/5n = 3/5
n=1
PLEASE ANSWER!! Write the equation of a line that passes through the points (-2,-9) and (2,-9).
Answer:
Step-by-step explanation:
the equation in the point slope form is
and reducing the equation (slope-intercept form)
Step-by-step explanation:
first we calculate the slope of the line with the formula:
where is a point where the line passes, and is another point where the line passes.
Since we have the following points:
(8, -2)
(5,5)
we conclude that
now we substitute this values to find the slope:
to find the equation now that we know the slope we use the point-slope equation:
and we subtitute the slope and the values of and :
we reduce this equation:
the equation in the point slope form is
and reducing the equation (slope-intercept form)
if y = .5x + 2, what is the value of x when y=4
y=0.5x+2
y=4
4=0.5x+2
-2 -2
2=0.5x
/0.5 /0.5
4=x
---
hope it helps
Answer:
[tex]x[/tex] = 4
Step-by-step explanation:
If [tex]y[/tex] = 4 then it would look like:
[tex]y[/tex] = .5[tex]x[/tex] + 2
Since .5 is 0.5, Half of 4 equal 2, PLUS the other 2 making it 4!!
The diameter of a circle is 19 meters. Complete the description for how you would find the circumference.
Answer:
The circumference of a circle is 2*pi*r or pi*diameter. The circumference is 19pi
HELP I WILL MARK BRAINLIEST
Answer:
the answer is A.
Step-by-step explanation:
Please help me! I need help solving this!
Answer:
18Step-by-step explanation:
if An = n+4
then A14 = 14+4 = 18
that's all .....have fun
PLEASE HELP! all u have to do is determine if it is positive or negative!
Answer:
I think it is positive.
Step-by-step explanation:
Iam soory if Iam wrong.
Solution(s) of the differential equation *y'= 2y
y = 2x only
А. y = 0 and Y = 22
y=0 only
y = 0 and 2x
The solutions to the differential equation y' = 2y are y = 0 and y = 2x. The solution y = 0 represents a constant function. The solution y = 2x represents a family of exponential functions.
The given differential equation is y' = 2y, where y' represents the derivative of y with respect to x. To solve this equation, we can separate variables by moving all terms involving y to one side and terms involving x to the other side:
dy/y = 2dx
Next, we integrate both sides of the equation. The integral of dy/y is ln|y|, and the integral of 2dx is 2x:
ln|y| = 2x + C
Here, C is the constant of integration. To simplify the equation, we can rewrite it as:
|y| = e^(2x + C)
Since e^(2x + C) is always positive, we can remove the absolute value sign:
y = ±e^(2x + C)
Now, let's consider the two cases separately.
Case 1: y = 0
If y = 0, then the exponential term becomes e^C, which is a constant. This implies that y remains zero for all values of x. Therefore, y = 0 is a solution to the differential equation.
Case 2: y ≠ 0
If y ≠ 0, we can rewrite the solution as:
y = ±e^C * e^(2x)
Since e^C is a constant, we can replace it with another constant, let's call it K:
y = ±K * e^(2x)
Here, ±K represents a family of exponential functions that grow or decay exponentially with a rate proportional to 2. Each value of K corresponds to a different solution to the differential equation.
In summary, the solutions to the differential equation y' = 2y are y = 0 and y = ±K * e^(2x), where K is a constant. The solution y = 0 represents a constant function, while y = ±K * e^(2x) represents a family of exponential functions.
Learn more about constant function click here: brainly.com/question/2292795
#SPJ11
Two boats start their journey from the same point A and travel along directions AC and AD, as shown below:
What is the distance, CD, between the boats?
230.9 ft
284.3 ft
115.5 ft
173.2 ft
Answer:
Option (1)
Step-by-step explanation:
By applying tangent rule in ΔABD,
tan(30°) = [tex]\frac{\text{Opposite side}}{\text{Adjacent side}}[/tex]
= [tex]\frac{AB}{BD}[/tex]
BD = [tex]\frac{AD}{\text{tan}(30)}[/tex]
BD = [tex]\frac{200}{\frac{1}{\sqrt{3} } }[/tex]
BD = 200√3 ft
By applying tangent rule in ΔABC,
tan(60°) = [tex]\frac{AB}{BC}[/tex]
[tex]\sqrt{3}=\frac{200}{BC}[/tex]
BC = [tex]\frac{200}{\sqrt{3}}[/tex]
Since, CD = BD - BC
CD = 200√3 - [tex]\frac{200}{\sqrt{3}}[/tex]
= 346.41 - 115.47
= 230.94 ft
≈ 230.9 ft
Therefore, Option (1) will be the correct option.
Answer:
230.9 ft
Step-by-step explanation:
person above said it was correct answer
7.) Jessica took her parents out to dinner. The total
bill was $48.55. She left an 18% tip. What was
Jessica's total cost for dinner?
Answer:
$57.289
Step-by-step explanation:
18% of 48.55
48.55 × 18 ÷ 100
= 8.739
48.55 + 8.739
=$57.289
Which equation best represents the relationship between x and y in the graph?
A. y = -2x + 1.5
B. y = -2x + 3
C. y = -1/2x + 3
D. y = -1/2x + 1.5
determine the slope given the two points. (-19,4) (17,11) PLEASE SHOW WORK
Answer:
m=7/36
Step-by-step explanation:
we need two points in order to find the ratio of the change in y and change in x, which is the slope
m=(y-y1)/(x-x1) (you can choose any point as y1 but be careful that you use the corresponding x1 value in the denominator)
m=(11-4)/(17-(-19))
m=7/36
A student suggests the following algorithm for calculating 72 - 38. 72 Two minus eight equals negative six. -38 -6 Seventy minus thirty equals forty. Forty plus negative six equals thirty-four, 34 which therefore is the result. As a teacher, what is your response? Does this procedure always work? Explain.
The student's suggested algorithm for subtracting numbers is incorrect. The algorithm produces the correct result in this specific case (72 - 38), but it does not work consistently for all subtraction problems.
The student's algorithm suggests subtracting the ones digit first and then subtracting the tens digit. While this approach may give the correct answer in some cases, it does not work for all subtraction problems. Subtraction is an operation where we need to consider the place value of the digits being subtracted.
In the case of 72 - 38, the student's algorithm produces the correct result of 34. However, if we apply the same procedure to a different subtraction problem, such as 43 - 29, we would get an incorrect result of 14 instead of the correct answer, 14. The student's algorithm fails to consider borrowing or regrouping when subtracting digits from different place values.
As a teacher, it is important to guide the student in understanding the standard algorithm for subtraction, which involves subtracting digits starting from the rightmost place value and borrowing when necessary. By teaching the correct procedure, students can consistently obtain accurate results for subtraction problems. It is crucial to explain the limitations of the student's suggested algorithm and emphasize the importance of understanding and applying the appropriate method for subtracting numbers.
Learn more about accurate here:
https://brainly.com/question/12740770
#SPJ11
(2 x 10^4) + (7 X 10^4) =
Answer:
90,000
Step-by-step explanation:
10^4=10,000.
2*10,000=20,000
7*10,000=70,000
20,000+70,000=90,000
6.
At its first stop a bus picked up 10
people. At the next stop, 8 people got
on and 3 people got off. At the third
stop, 5 people got on and 12 people
got off. How many passengers were
then on the bus?
Answer:
8
Step-by-step explanation:
10+8-3+5-12=