By applying the principles of calorimetry and using the given data, the enthalpy of dissolution is determined to be -40.8 kJ/mol.
The enthalpy of dissolution of CsBr(s) can be calculated based on the observed temperature change and the heat capacity of the calorimeter.
The enthalpy of dissolution (ΔHdissolution) can be calculated using the equation:
ΔHdissolution = q / n
where q is the heat exchanged during the process and n is the number of moles of the substance being dissolved.
To calculate the heat exchanged, we need to determine the heat absorbed by the solution and the calorimeter. Since the specific heat of the solution is assumed to be equal to the specific heat of water, we can use the equation:
q = m × C × ΔT
where m is the mass of the water (111.10 g), C is the specific heat capacity of water, and ΔT is the temperature change (final temperature - initial temperature). The specific heat capacity of water is approximately 4.18 J/g°C.
Substituting the given values, we have:
q = (111.10 g) × (4.18 J/g°C) × (21.97°C - 24.31°C)
q = -321.26 J
Next, we need to consider the heat capacity of the calorimeter. The heat capacity (Ccal) is given as 1.64 J/°C. The negative sign indicates that the calorimeter released heat to the surroundings.
Now, we can calculate the total heat exchanged during the process (qtotal) by summing the heat absorbed by the solution and the heat released by the calorimeter:
qtotal = q(solution) + q(calorimeter)
qtotal = -321.26 J + (-1.64 J/°C) × (21.97°C - 24.31°C)
qtotal = -333.94 J
To find the number of moles of CsBr(s), we need to convert the mass of CsBr(s) to moles. The molar mass of CsBr is 212.81 g/mol.
n = mass / molar mass
n = 8.01 g / 212.81 g/mol
n = 0.0377 mol
Finally, we can calculate the enthalpy of dissolution:
ΔHdissolution = qtotal / n
ΔHdissolution = (-333.94 J) / 0.0377 mol
ΔHdissolution = -40.8 kJ/mol
Therefore, the enthalpy of dissolution of CsBr(s) is approximately -40.8 kJ/mol. The negative sign indicates that the process is exothermic, meaning heat is evolved during dissolution.
To learn more about calorimeter here brainly.com/question/28034251
#SPJ11
Which of the following best accounts for why
malleability occurs?
(A) The highly flexible structure of the atoms due to lack
of an internal structure.
(B) The high potential energy of the substance due to the
free floating electrons.
(C) The ability of the cations to slide past one another due to the delocalization of the electrons.
(D) The repulsion of the cations for each other causes the solid to easily spread with little resistance.
The best explanation for malleability among the given options is (C) The ability of the cations to slide past one another due to the delocalization of the electrons. Option C
Malleability refers to the property of a substance to be deformed or shaped into different forms without breaking or cracking. In metallic substances, such as metals, the atoms are arranged in a closely packed lattice structure held together by metallic bonds.
These metallic bonds involve the delocalization of electrons, meaning that the valence electrons are not bound to specific atoms but instead move freely throughout the metal lattice.
The delocalization of electrons allows for the cations (positively charged ions) to slide past one another when a force is applied. As a result, the metal can be easily deformed into various shapes without disrupting the overall structure.
Option (A) is incorrect because atoms do have internal structures. Option (B) is not specific to malleability and refers more to the concept of potential energy. Option (D) does not accurately explain the mechanism behind malleability. Therefore, option (C) provides the most accurate explanation for why malleability occurs in metallic substances.
For more such questions on malleability visit:
https://brainly.com/question/12181165
#SPJ8
If 15.00 mL of a 1.00 M HCl solution is mixed with 25.00 mL of a 0.250 M NaOH solution in a process that produces 273 mg of NaCl, what is the percentage yield of NaCl?
The percentage yeild of the NaCl from the calculation is 73.8 %
What is the percentage yield?The percentage yield is a measure of the efficiency of a chemical reaction or process, indicating the proportion of the theoretical yield that is actually obtained in practice.
Number of moles of HCl = 1 * 15/1000
= 0.015 moles
Number of moles of NaOH = 25/1000 * 0.250
= 0.00625 moles
Since the reaction is 1:1, we can see that NaOH is the limiting reactant
Theoretical yeild = 0.00625 moles * 58.5 g/mol
= 0.37 g or 370 mg
We have the percentage yeild is;
273/370 * 100/1
= 73.8 %
Learn more about percentage yield:https://brainly.com/question/30794636
#SPJ4
Assuming the same solute and solvent for all cases, which of the following solutions is the most concentrated?
2 moles of solute dissolved in 3 liters of solution
6 moles of solute dissolved in 4 liters of solution
4 moles of solute dissolved in 8 liters of solution
1 mole of solute dissolved in 1 liter of solution
The solution with 6 moles of solute dissolved in 4 liters of solution has a molarity of 1.5 M, making it the most concentrated solution among the options provided. Option B
What is a concentrated solution?We just have to find the molarity of each of the solutions here to know the most concentrated of them all. Molarity is defined as moles of solute divided by liters of solution.
Let's calculate the molarity for each case:
For 2 moles of solute dissolved in 3 liters of solution:
Molarity = 2 moles / 3 liters = 0.67 M
For 6 moles of solute dissolved in 4 liters of solution:
Molarity = 6 moles / 4 liters = 1.5 M
For 4 moles of solute dissolved in 8 liters of solution:
Molarity = 4 moles / 8 liters = 0.5 M
For 1 mole of solute dissolved in 1 liter of solution:
Molarity = 1 mole / 1 liter = 1 Mrs.
Learn more about concentrated solution:https://brainly.com/question/28480075
#SPJ4
which sample displayed the lower ph? di water or boiled di water
Boiled deionized (DI) water would typically display a lower pH compared to regular DI water.
Boiling deionized water can lead to the removal of dissolved gases, such as carbon dioxide, which can contribute to the formation of carbonic acid and result in a slightly lower pH. The removal of dissolved gases through boiling can make the water less acidic overall.
However, it is important to note that the pH of both regular DI water and boiled DI water should be very close to neutral, around 7, as pure water is considered neutral. The difference in pH between regular DI water and boiled DI water would be minimal, with boiled DI water potentially showing a slightly lower pH due to the removal of dissolved gases.
To know more about deionized water here
https://brainly.com/question/18764715
#SPJ4
An isolated chamber with rigid walls is divided into two equal compartments, one containing gas and the other evacuated. The partition between the compartments ruptures. After the passage of a sufficiently long period of time the temperature and pressure are found to be uniform throughout the chamber.
a) If the filled compartment initially contains an ideal gas of constant heat capacity at 1 MPa and 500 K, what is the final temperature and pressure in the chamber?
b) If the filled compartment initially contains steam at 1 MPa and 500 K, what is the final temperature and pressure in the compartment?
In an isolated chamber with rigid walls, if one compartment initially contains an ideal gas at 1 MPa and 500 K, and the other compartment is evacuated, the final temperature and pressure in the chamber will be the same throughout.
When the partition between the compartments ruptures, the gas molecules from the filled compartment will spread out and mix with the molecules from the evacuated compartment. As a result, the temperature and pressure in the chamber will become uniform throughout.
For an ideal gas, the temperature and pressure are directly proportional. Therefore, since the final temperature and pressure are uniform, they will both be equal throughout the chamber.
In both scenarios, whether the filled compartment contains an ideal gas or steam, the final temperature and pressure in the chamber will be the same. The exact values will depend on the specific conditions of the initial gas or steam, such as the molar mass and the amount of substance present. However, without additional information or specific calculations, it is not possible to determine the exact values of the final temperature and pressure in the chamber.
Learn more about isolated chamber, below:
https://brainly.com/question/23858151
#SPJ11
The molar mass of an unknown compound is 560 g. A sample of the compound consists of 0.900 g of carbon, 0.0751 g of hydrogen, 0.175 g of nitrogen, and 0.600 g of oxygen. What is the the molecular formula of this compound. O C24H₂4N4012 O C24H22N3013 C12H14N₃O5 O C24H₂8 N010
The molecular formula of the compound is C12H14N₃O5.
To determine the molecular formula of the compound, we need to calculate the empirical formula first, which represents the simplest whole-number ratio of atoms in the compound.
Given the masses of carbon, hydrogen, nitrogen, and oxygen in the sample, we can calculate the moles of each element using their molar masses:
Moles of C = 0.900 g / 12.01 g/mol = 0.0749 mol
Moles of H = 0.0751 g / 1.008 g/mol = 0.0745 mol
Moles of N = 0.175 g / 14.01 g/mol = 0.0125 mol
Moles of O = 0.600 g / 16.00 g/mol = 0.0375 mol
Next, we need to find the simplest ratio of the moles by dividing each value by the smallest value:
Moles of C / 0.0125 = 5.992
Moles of H / 0.0125 = 5.960
Moles of N / 0.0125 = 1.000
Moles of O / 0.0125 = 3.000
Rounding these ratios to the nearest whole number, we get a ratio of 6:6:1:3, which corresponds to the empirical formula C6H6N1O3.
Finally, to determine the molecular formula, we divide the given molar mass of the compound (560 g) by the molar mass of the empirical formula (C6H6N1O3):
560 g / (6 * 12.01 g/mol + 6 * 1.008 g/mol + 1 * 14.01 g/mol + 3 * 16.00 g/mol) ≈ 560 g / 194.19 g/mol ≈ 2.88
Since the result is close to 3, we can multiply the empirical formula by 3 to obtain the molecular formula: C6H6N1O3 * 3 = C18H18N3O9.
However, none of the options provided match the calculated molecular formula.
Learn more about molecular: https://brainly.com/question/1078183
#SPJ11
The molecular formula for the molar mass of the unknown compound is 560g that consists of 0.900 g of carbon, 0.0751 g of hydrogen, 0.175 g of nitrogen, and 0.600 g of oxygen is C₂₄H₂₄N₄O₁₂ (Option A).
To determine the empirical formula, which involves converting the sample into moles. The moles of each element in the compound are calculated using their respective atomic masses.
C = 0.900/12.01 = 0.0749 H = 0.0751/1.01 = 0.0745 N = 0.175/14.01 = 0.0125 O = 0.600/16.00 = 0.0375The smallest number of moles is 0.0125 moles of nitrogen, which is the limiting reagent. As a result, the empirical formula is:
N = 0.0125/0.0125 = 1C = 0.0749/0.0125 = 6H = 0.0745/0.0125 = 6O = 0.0375/0.0125 = 3Therefore, the empirical formula is C₆H₆NO₃.
The empirical formula mass can be calculated by adding the molar masses of each element:
C = 6(12.01) = 72.06 H = 6(1.01) = 6.06 N = 1(14.01) = 14.01 O = 3(16.00) = 48.00Total mass = 140.13
The molecular formula can be determined by comparing the empirical formula mass and the given molar mass. The molecular formula is the same as the empirical formula when the two values are equal. The ratio of the molecular formula mass to the empirical formula mass is equal to the integer value of n (number of empirical formula units):
n = molar mass/empirical formula mass
n = 560/140.13
n = 4
Therefore, the molecular formula is four times the empirical formula: C₂₄H₂₄N₄O₁₂ (Option A).
Learn more about molecular formula: https://brainly.com/question/29435366
#SPJ11
write the complete electron configuration for bromine using the periodic table
Bromine is a non-metal element with the chemical symbol Br and atomic number 35. To write the complete electron configuration of bromine, we first need to determine the number of electrons in its neutral state. Since bromine has an atomic number of 35, it means that it has 35 electrons in its neutral state.
The electron configuration of bromine can be written by using the Aufbau principle, which states that electrons fill the lowest energy level orbitals first before moving to higher energy levels. The electron configuration for bromine can be written as follows:
1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p5
The first number represents the principal quantum number, which determines the energy level of the electrons. The letters represent the subshells, where s, p, d, and f are the different subshells. The superscript numbers represent the number of electrons in each subshell.
In the case of bromine, the first two electrons are in the 1s orbital, followed by two electrons in the 2s orbital and six electrons in the 2p orbital. After that, there are two electrons in the 3s orbital and six electrons in the 3p orbital. The remaining ten electrons are in the 4s, 3d, and 4p orbitals, with five electrons in the 4p orbital.
Thus, the complete electron configuration for bromine using the periodic table is 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p5.
To know more about periodic table visit:
https://brainly.com/question/24208948
#SPJ11
Calculate the pH at 25 C of a 0.75 M solution of sodium hypochlorite (NaClO). Note that hypochlorous acid (HClO) is a weak acid with a pKa of 7.50. Round your answer to 1 decimal place.
The pH of the given solution is 3.9 (rounded to 1 decimal place).
The pH of a 0.75 M solution of sodium hypochlorite (NaClO) can be calculated by using the dissociation constant of hypochlorous acid (HClO). The reaction for the dissociation of hypochlorous acid is given as,HClO(aq) + H2O(l) ⇌ ClO-(aq) + H3O+(aq)The dissociation constant (Ka) for the above reaction is given as,Ka = [H3O+][ClO-] / [HClO]pKa = -logKa = 7.50From the above equation, we get,[H3O+] = sqrt(Ka[HClO] / [ClO-])On substituting the values, we get,[H3O+] = sqrt(1.62 × 10^-8 × 0.75 / 1) = 1.26 × 10^-4pH = -log[H3O+] = -log(1.26 × 10^-4) = 3.9Hence, the pH of the given solution is 3.9 (rounded to 1 decimal place).
Learn more about pH here:
https://brainly.com/question/2288405
#SPJ11
is sio2 most likely a molecular, metallic, ionic, or covalent-network solid?
Sio2, also known as silicon dioxide or silica, is most likely a covalent-network solid.
To determine the type of solid, we need to analyze the nature of bonding in SiO2. Silicon (Si) and oxygen (O) are both nonmetals, and their bonding is typically covalent.
In SiO2, silicon forms four covalent bonds with four oxygen atoms, and each oxygen atom forms two covalent bonds with two silicon atoms. This results in a three-dimensional network structure of alternating silicon and oxygen atoms.
Covalent-network solids have a high melting point, are hard and brittle, and do not conduct electricity because the electrons are localized within the covalent bonds. In the case of SiO2, the strong covalent bonds between silicon and oxygen atoms give rise to its characteristic properties.
Based on the nature of bonding in SiO2, it is most likely a covalent-network solid. The three-dimensional network structure formed by covalent bonds between silicon and oxygen atoms is responsible for its high melting point and other properties associated with covalent-network solids.
To know more about covalent-network visit:
https://brainly.com/question/30037205
#SPJ11
find all real numbers $k$ for which the equation $(k-5)x^2-kx 5=0$ has exactly one real solution. if you find more than one, then list the values separated by commas.
The equation $(k-5)x^2-kx+5=0$ has exactly one real solution for values of $k$ in the range $(-\infty, -5)\cup (0,5)\cup (5,+\infty)$.
To find the values of $k$ for which the given quadratic equation has exactly one real solution, we can examine the discriminant of the quadratic equation, which is given by $D = (-k)^2 - 4(k-5)(5)$. For a quadratic equation to have exactly one real solution, the discriminant must be equal to zero, since it indicates that the quadratic equation has a repeated real root. Therefore, we have the equation $(-k)^2 - 4(k-5)(5) = 0$.
Expanding and simplifying the above equation, we get $k^2 - 20k + 100 = 0$. This is a quadratic equation in $k$, and we can solve it by factoring or using the quadratic formula. Factoring the equation gives us $(k - 10)^2 = 0$, which implies $k = 10$. However, this solution does not satisfy the original equation.
Therefore, the equation $(k-5)x^2-kx+5=0$ has no real solutions for $k = 10$. To find the valid solutions, we can consider the ranges of $k$ where the discriminant is positive or negative. The discriminant is positive for $k < -5$ and $k > 5$, indicating that the quadratic equation has two distinct real solutions in these ranges. On the other hand, the discriminant is negative for $0 < k < 5$, implying that the quadratic equation has no real solutions in this range.
Thus, the values of $k$ for which the equation $(k-5)x^2-kx+5=0$ has exactly one real solution are given by the range $(-\infty, -5)\cup (0,5)\cup (5,+\infty)$.
Learn more about equation here: https://brainly.com/question/29174899
#SPJ11
to better determine the potency of ethanol, the term proof is used to indicate the beverage’s strength or percentage of pure ethanol. true or false
The statement is true. The term "proof" is used to indicate the strength or percentage of pure ethanol in a beverage. It is a measure of alcoholic content and is commonly used in the United States.
The term "proof" is indeed used to indicate the strength or percentage of pure ethanol in a beverage. Proof is a historical measurement that originated from a method to determine the alcohol content of spirits. In the United States, the proof system is defined as twice the percentage of alcohol by volume (ABV). Therefore, a beverage labeled as 80 proof contains 40% ABV. The term "proof" originated from a historical practice where alcohol content was tested by soaking gunpowder with the spirit and igniting it. If the gunpowder ignited, it was considered "proof" that the spirit contained a sufficient amount of alcohol.
In other countries, such as the United Kingdom and many European countries, alcohol content is typically measured in terms of ABV alone, without using the term "proof." However, it is important to note that proof is not a standardized measurement worldwide, and its use may vary depending on the region.
Learn more about ethanol here: https://brainly.com/question/23435787
#SPJ11
what is the mole ratio of hydrogen peroxide to permanganate ion in the balanced chemical equation determined in question
To determine the mole ratio of hydrogen peroxide (H2O2) to permanganate ion (MnO4-) in the balanced chemical equation, the specific balanced equation needs to be provided. Without the equation, the mole ratio cannot be determined. The mole ratio represents the ratio of the coefficients of the species involved in a chemical reaction and is crucial for stoichiometric calculations.
The mole ratio is obtained from the coefficients of the balanced chemical equation. Each coefficient represents the number of moles of that particular species involved in the reaction. Without the balanced chemical equation mentioned in the question, it is not possible to determine the specific mole ratio between hydrogen peroxide and permanganate ion.
For example, in a balanced chemical equation:
a H2O2 + b MnO4- → c Mn2+ + d O2 + e H2O
The mole ratio between H2O2 and MnO4- would be a:b. However, since the balanced equation is not provided, the mole ratio cannot be determined accurately in this case.
To know more about chemical reaction, refer:
brainly.com/question/11231920
#SPJ11
Provide an equation for the acid-catalyzed condensation of ethanoic (acetic) acid and 3- methylbutanol (isopentyl alcohol). Please use proper condensed structural formulas. Compare this product with the ester that you would isolate from the esterification of 4-methylpentanoic acid with methanol. Provide an equation for this reaction as well. Are these products isomers and if so what type of isomer are they?
The products, isopentyl acetate and methyl isovalerate, are isomers. They are structural isomers, specifically functional group isomers, as they have the same molecular formula but differ in the arrangement of the atoms within the molecules.
The equation for the acid-catalyzed condensation of ethanoic acid and 3-methylbutanol is as follows:
CH3COOH + CH3CH2CH(CH3)CH2OH ⟶ CH3COOCH2CH(CH3)CH2CH3 + H2O
The product of this reaction is isopentyl acetate, which is commonly known as banana oil. It is an ester formed by the condensation of the carboxylic acid (ethanoic acid) and an alcohol (3-methylbutanol). The acid catalyst, usually sulfuric acid, facilitates the reaction by protonating the carbonyl oxygen of the carboxylic acid, making it more reactive towards the alcohol.
The equation for the esterification of 4-methylpentanoic acid (also known as isovaleric acid) with methanol is as follows:
CH3COOH + CH3OH ⟶ CH3COOCH3 + H2O
The product of this reaction is methyl isovalerate. It is also an ester formed by the condensation of a carboxylic acid (4-methylpentanoic acid) and an alcohol (methanol). The acid catalyst aids in the formation of the ester by promoting the removal of water.
These products, isopentyl acetate and methyl isovalerate, are isomers. They are structural isomers, specifically functional group isomers, as they have the same molecular formula but differ in the arrangement of the atoms within the molecules.
To know more about isomers visit:
brainly.com/question/32508297
#SPJ11
Predict the sign of the entropy change for the following process: CaCo3(s)+2HCL(aq)→CaCl2(aq)+H2O(l)+CO2(g) Positive Negative
The sign of the entropy change for the given process is likely to be positive (+), indicating an increase in entropy.
To predict the sign of the entropy change for the given process, we need to consider the change in the number of particles and the change in the arrangement of particles.
In the given reaction: CaCO₃(s) + 2HCl(aq) → CaCl₂(aq) + H₂O(l) + CO₂(g)
1. The reactant CaCO₃(s) is a solid, and the products CaCl₂(aq) and H₂O(l) are in the aqueous and liquid states, respectively. The change from a solid to aqueous and liquid states generally increases the entropy.
2. The reactant HCl(aq) is in the aqueous state, and the product CO₂(g) is in the gaseous state. The change from an aqueous to a gaseous state increases the entropy.
Considering these factors, the overall change in the entropy of the system is expected to be positive or an increase in entropy.
Therefore, the sign of the entropy change for the given process is likely to be positive (+), indicating an increase in entropy.
Learn more about entropy here:
brainly.com/question/31066828
#SPJ4
Rank the following compounds in order from most reduced to most oxidized sulfur. Most reduced O SO42- O NaSO3 O S8 O Na2S
Redox reactions refer to reactions that involve both oxidation (loss of electrons) and reduction (gain of electrons). In order to classify elements or compounds as oxidizing or reducing agents, chemists use oxidation numbers or oxidation states.
Oxidation number is the charge of an atom when it gains or loses electrons. It is a measure of the degree of oxidation (loss of electrons) of an atom in a compound.
The ranking of the given compounds in order from most reduced to most oxidized sulfur is:
1. S8: Sulfur has zero oxidation state in S8, indicating that it has not gained or lost electrons and is therefore not oxidized or reduced. S8 is therefore the most reduced form of sulfur.
2. Na2S: In Na2S, sulfur has an oxidation state of -2. This means that it has gained two electrons from Na, making it more oxidized than S8.
3. NaSO3: The oxidation state of sulfur in NaSO3 is +4. It has gained two oxygen atoms and hence it is more oxidized than Na2S.
4. SO42-: Sulfate ion has an oxidation state of +6, which means it has gained six electrons from four oxygen atoms. Thus, it is the most oxidized form of sulfur among the given compounds.
Therefore, the ranking of the given compounds in order from most reduced to most oxidized sulfur is: S8 > Na2S > NaSO3 > SO42-.
To know more about compounds visit:
https://brainly.com/question/31382425
#SPJ11
The Ksp of Al(OH)3 is 2.0 x 10-31 at 298 K. What is \DeltaGo (at 298 K) for the precipitation of Al(OH)3 according to the equation below? Al3+(aq) + 3OH- (aq) -> Al(OH)3 (s) The answer is -175 kJ mol-1 , I do not understand why it is negative and not positive because, every time I plug the equation in my calculator, the answer is positive and not negative.
The negative value of ΔG° (-175 kJ/mol) indicates that the precipitation of Al(OH)3 is thermodynamically favorable and spontaneous at 298 K. The negative sign signifies that the reaction will proceed in the forward direction without the need for an external energy input.
The sign of ΔG° determines the spontaneity of a reaction. A negative ΔG° indicates a thermodynamically favorable process, where the reaction will occur spontaneously in the forward direction. In the case of the precipitation of Al(OH)3, the given value of -175 kJ/mol suggests that the reaction is energetically favorable. The calculation of ΔG° involves the equilibrium constant (K) of the reaction. For this reaction, K corresponds to the solubility product constant (Ksp) of Al(OH)3, which is 2.0 x 10^(-31). When plugging this value into the equation ΔG° = -RTln(K), the natural logarithm of a very small number (Ksp) yields a large positive value. The negative sign outside the equation makes the overall ΔG° negative, indicating thermodynamic favorability.
Learn more about Al(OH)3 here ; brainly.com/question/1391525
#SPJ11
For many plants, carbon dioxide is a limiting factor.
What happens when more carbon dioxide is available to plants?
a.Plant growth increases.
b.Plant growth stays the same.
c.Plant growth decreases.
d.Plant growth may increase or decrease.
The correct answer is option a
How does increased carbon dioxide availability affect plant growth?Increased availability of carbon dioxide has a direct impact on plant growth. Carbon dioxide is a critical component of photosynthesis, the process through which plants convert light energy into chemical energy. In normal conditions, carbon dioxide concentrations in the atmosphere can be a limiting factor for photosynthesis.
When more carbon dioxide is available, plants are able to take in higher amounts of this gas, leading to increased rates of photosynthesis. As a result, plants experience enhanced growth, including increased biomass, larger leaves, and improved reproductive capacity.
Carbon dioxide, along with water and sunlight, is essential for photosynthesis. Higher carbon dioxide levels can potentially stimulate photosynthesis and have been observed to improve plant productivity in certain environments.
Learn more about:Increased availability of carbon dioxide
brainly.com/question/20513967
#SPJ11
assuming all of the analogous reactions occur, why would lithium chlorate be a more practical choice for the "chlorate candle" (see p. 2 of the procedure) than either sodium or potassium chlorate?
Lithium chlorate (LiClO3) may be a more practical choice for the "chlorate candle" compared to sodium or potassium chlorate due to several reasons:
1. Stability: Lithium chlorate is relatively more stable compared to sodium and potassium chlorate. It has a lower tendency to decompose spontaneously, which makes it safer to handle and store. Sodium and potassium chlorate are more prone to decomposition and can become hazardous if mishandled or exposed to heat or shock.
2. Oxygen release: The primary purpose of using chlorates in a "chlorate candle" is to release oxygen upon decomposition. Lithium chlorate can release oxygen effectively when heated, providing the necessary oxidizing agent for combustion. Sodium and potassium chlorate also release oxygen, but they may do so more vigorously and uncontrollably, increasing the risk of a sudden and potentially dangerous reaction.
3. Reaction kinetics: The rate of reaction is an important factor when considering practicality. Lithium chlorate tends to decompose at a slower rate compared to sodium and potassium chlorate, allowing for a more controlled and sustained oxygen release. This can be advantageous for applications that require a longer-lasting and consistent oxygen supply.
Overall, the choice of lithium chlorate over sodium or potassium chlorate for a "chlorate candle" is driven by its better stability, controlled oxygen release, and safer handling characteristics. These factors make lithium chlorate a more practical and reliable choice for such applications.
Learn more about decomposition here:
https://brainly.com/question/14843689
#SPJ11
Which metal can be prepared by electrolysis of an aqueous solution of one of its salts?
a. magnesium
b. potassium
c. sodium
d. aluminum
e. copper
Out of the options provided, aluminum (d) can be prepared by electrolysis of an aqueous solution of one of its salts
Aluminum can be prepared by electrolysis of an aqueous solution of one of its salts, specifically aluminum oxide (Al2O3) dissolved in molten cryolite (Na3AlF6). This process is known as the Hall-Héroult process.
In the Hall-Héroult process, a carbon anode and a graphite cathode are placed in a cell containing molten cryolite. The aluminum oxide is dissolved in the molten cryolite, and when an electric current is passed through the solution, electrolysis occurs.
At the cathode, aluminum ions (Al3+) are reduced to form molten aluminum metal, which collects at the bottom of the cell. At the anode, oxygen ions (O2-) are oxidized, producing oxygen gas.
The overall reaction can be represented as follows:
2 Al2O3(l) → 4 Al(l) + 3 O2(g)
Out of the options provided, aluminum (d) can be prepared by electrolysis of an aqueous solution of one of its salts. Magnesium (a), potassium (b), sodium (c), and copper (e) cannot be obtained through electrolysis of their aqueous salt solutions.
To know more about electrolysis visit:
brainly.com/question/12994141
#SPJ11