Answer:
multipliers: 3, 2 for subtraction; or 3, -2 for addition.solution: (x, y) = (-4 1/6, 7 2/3)Step-by-step explanation:
You want to solve the given system of equations by eliminating the y-term. You also want to know what constants are used in the process.
EliminationThe y-term can be eliminated from these equations by combining them in such a way as to may the coefficient of y be zero. This can be done an infinite number of ways.
One way that works reasonably well is to identify the coefficients of y, and multiply each equation by the y-coefficient in the other equation. The resulting equations can be subtracted one from the other to eliminate the y-terms, which now have identical coefficients. You can choose the equation with the smaller x-coefficient to subtract from the other one.
ApplicationThe y-term coefficients are 2 and 3.
Multiply the first equation by 3, and the second by 2.
3 × (2x +2y) = 3 × 7 ⇒ 6x +6y = 21
2 × (6x +3y) = 2 × (-2) ⇒ 12x +6y = -4
The x-coefficients are 6 and 12. We choose to subtract the first equation (with x-coefficient 6) from the second equation:
(12x +6y) -(6x +6y) = (-4) -(21)
6x = -25 . . . . . . . . simplified
x = -25/6 = -4 1/6 . . . . . divide by 6
Substituting for x in the first equation, we have ...
2(-25/6) +2y = 7
2y = 7 +25/3 . . . . . add 25/3
2y = 46/3 . . . . . . . .combine terms
y = 23/3 = 7 2/3 . . . . divide by 2
The solution to the equations is (x, y) = (-4 1/6, 7 2/3).
CheckSince these numbers are not integers, we choose to check them in the original equations. We used the first equation to find y, so we'll use the second equation for checking.
6(-4 1/6) +3(7 2/3) = -25 +23 = -2 . . . . . . as required
__
Additional comment
If you solve these by addition, rather than subtraction, you want to choose multipliers that result in opposite coefficients, so they add to zero. Essentially, you use the opposite coefficients, as described above, but you negate one of them.
Above, we chose the subtraction in a way that resulted in the x-coefficient being positive. If you arbitrarily choose the signs of the multipliers (always negating the second one, for example), the combined equations may make the x-coefficient negative. That works, too, but may require more mental effort to deal with the minus sign.
Of course, you can use the x-coefficients and eliminate the x-terms.
Or, you can use a single multiplier that corresponds to the ratio of the coefficients. For example the ratio of the 2nd y-coefficient to the first one is 3/2. Multiplying the first equation by this will give the y-term a coefficient of 3, matching the y-coefficient in the 2nd equation. Then the subtraction can proceed as already described.
(6x +3y) -3/2(2x +2y) = (-2) -3/2(7)
3x = -25/2 . . . . . simplified; y is gone.
HELP ASAP!! READ CAREFULLY
Answer:
Step-by-step explanation:
There is a scale factor of 2 so since the trapezoid is 9 we can divide by 2 so AD is 4.5 and CB is 4.5
YZ is the same as ZW so 8
Using the scale factor we can divide 8 by 2 to get 4
Perimeters can be found from the sums so
ABCD would be 19 and WXYZ would be 38
please help me!!!! put from least to greatest
Answer: -10,-8.7, -9.1, 8, 8.7, 8.06, 9
Step-by-step explanation:
77 squared rooted equals 8.7
-83 square rooted equals -9.1
-76 square rooted equals -8.7 ( remember negative numbers are greater than positive numbers)
65 square rooted equals 8.06
I CAN DETERMINE IF A VALUE IS TRUE GIVEN AN EQUATION.
9. If x = -3, then which of the following equations are true? Put a checkmark on all that apply.
Χ
3-9= 15
-2x+18=24
6x +9=-13
4x-9=-21
-2(-3)+18=24
6+18 = 24
24 = 24
correct6(-3) +9=-13
-18+9 = -13
-9 ≠ - 13
Wrong4(-3)-9=-21
-12 -9 =-21
-21 = -21
CorrectURGENT!! ILL GIVE BRAINLIEST!!!! AND 100 POINTS!!!
The slant height of the cone c² = 5² + (1)² or c ≅ 5.1.
Option (A) is correct option.
What is cone?A cone is a three-dimensional geometric structure with a smooth transition from a flat, usually circular base to the apex or vertex, a point that creates an axis to the base's center.
Given that,
The radius of the cone = 1 inch,
And the height of the cone = 5 inch.
Let the slant height of the cone is c,
To find the slant height of the cone, use Pythagorean theorem,
c² = 5² + (1)²
c² = 25 + 1
c² = 26
c= 5.09
c ≅ 5.1
The slant height of the cone is 5.1 inch.
To learn more about Cone on:
https://brainly.com/question/20757316
#SPJ1
the speed of water in a whirl pool varies inversely with the radius. if the water speed is 2.5 feet per second at a radius of 30 feet what is the speed of the water at a radius of 3 feet
Answer:
Step-by-step explanation:
Let, the Speed of the water be 'x'
and the Radius be 'r'
Now, the speed of Water Varies inversely with the Radius
So, x ∝ 1/r
x = k/r -----------(i)
Here, k is the proportionality constant
Now,
Given that, x = 2.5 ft per sec
then, 30 ft,
So, from eq. (i)
2.5 = k/30
So, k = 75
Again From eq. (i)
x = 75/r
Now, if r = 3ft
then, x = 75/3
x = 25
Hence, Speed of the water (x) = 25 ft per sec.
The length of the side of a quadrilateral are 6 cm, 5 cm, 8cm. and 11cm the perimeter of
the similar quadrilateral is 20 cm.
Find the length of the sides of the second, quadrilateral
Answer:
Step-by-step explanation:
Let's call the side lengths of the first quadrilateral a, b, c, and d, and the side lengths of the second quadrilateral A, B, C, and D. We are given that the perimeter of the second quadrilateral is 20 cm, and that the quadrilaterals are similar. This means that the ratio of the side lengths of the two quadrilaterals is the same for all four sides. Let's call this ratio r. Then we have:
A + B + C + D = 20 cm
and
A/a = B/b = C/c = D/d = r
We can find the value of r by taking the ratio of any two sides of the quadrilaterals. For example, we can take the ratio of A to a:
A/a = r
Substituting the expressions for A and a in terms of r, we get:
(ra)/a = r
Solving for r, we get:
r = a/a = 1
This means that the ratio of the side lengths of the two quadrilaterals is 1. Therefore, the side lengths of the second quadrilateral are equal to the side lengths of the first quadrilateral. Substituting the given values for the side lengths of the first quadrilateral, we get:
A = 6 cm
B = 5 cm
C = 8 cm
D = 11 cm
Therefore, the side lengths of the second quadrilateral are A = 6 cm, B = 5 cm, C = 8 cm, and D = 11 cm.
please quick
giving brainliest
Answer:
see explanation
Step-by-step explanation:
(a)
given y is inversely proportional to x² then the equation relating them is
y = [tex]\frac{k}{x^2}[/tex]
to find k use any ordered pair from the table
using (1, 4 ) and substituting into equation
4 = [tex]\frac{k}{1^2}[/tex] = [tex]\frac{k}{1}[/tex] , thus
k = 4
y = [tex]\frac{4}{x^2}[/tex] ← equation of proportion
(b)
when y = 25 , then
25 = [tex]\frac{4}{x^2}[/tex] ( multiply both sides by x² )
25x² = 4 ( divide both sides by 25 )
x² = [tex]\frac{4}{25}[/tex] ( take square root of both sides )
x = ± [tex]\sqrt{\frac{4}{25} }[/tex] = ± [tex]\frac{2}{5}[/tex]
then
positive value of x when y = 25 is x = [tex]\frac{2}{5}[/tex]
3/4 of a peice of metal has a mass of 15kg. What is the mass of 2/5 of the peice of metal?
Answer:
Step-by-step explanation:
Let total mass be x
(3/4)*x=15
on solving
x=20
now,
mass of 2/5 of piece of metal is-
=> (2/5)*20
=> 8
Ans- 8kg
Help a girl out
Given: ray AC is parallel to ray DE, measure angle FED= measure angle GCA= 45°
Prove: ray FE is parallel to ray GC
We have proved that the ray FE is parallel to the ray GC.
What is meant by parallel lines?
In geometry, parallel lines are coplanar straight lines that do not intersect at any point. Parallel planes are planes in the same three-dimensional space that never meet. Parallel curves are curves that do not touch each other or intersect and keep a fixed minimum distance.
Angle DEF intersects at B
which results in angle DEF corresponding to the angle ACG.
As DEF = 45 so angle ACG = 45
So by the above discussion, we can say that the ray FE is parallel to the ray GC.
Hence, we have proved that the ray FE is parallel to the ray GC.
To learn more about parallel lines visit:
brainly.com/question/4954460
#SPJ1
Stephen's lunch bill is currently at $ 8.33. Stephen orders a fruit salad for take-out, and wants to leave $ 2.25$ as a tip for his server. He has a $\$ 10$ bill and a $5 bill. How much change should he receive after paying for his lunch, the fruit salad, and the tip?
The amount of change that Stephen receives is $______
Using mathematical operations on the word problem, the amount he will receive as his change is $1.43
Word ProblemA word problem is a few words are presented in a form of problem and needs to be solved by way of a mathematical calculation.
This problem can be solved using mathematical operation such as addition and subtraction.
The total amount he has with him = $15
The current bill = $8.33
The fruit salad = $2.99
Tip = $2.25
Total amount spent = 8.33 + 2.99 + 2.25
The total amount spent = 13.57
The amount of change = total amount he has with him - total amount spent
The amount of change = 15 - 13.57
The amount of change = 1.43
The change he is going to receive is $1.43
Learn more on word problem here;
https://brainly.com/question/13818690
#SPJ1
the product of w and 10
Answer: 10w
Step-by-step explanation:
6 Bob is flying to Croatia for a holiday. When he gets to the airport, he discovers that they
hove a new pricing system for luggage. 2 items of hand luggage plus 1 item to go in the hold
costs £86. 1 item of hand luggage and a piece of luggage to go in the hold costs £66. How
much does it cost to put an item of luggage in the hold?
DP BOOT
Answer:
£46
Step-by-step explanation:
You want to know the cost of luggage in the hold when 2 in the hand and 1 in the hold is £86, and 1 in the hand and 1 in the hold is £66.
RelationsLet 'a' and 'b' represent the costs of a piece of hand luggage and one in the hold, respectively. Then the given relations are ...
2a +b = 86
a +b = 66
SolutionSubtracting the first equation from twice the second gives ...
2(a +b) -(2a +b) = 2(66) -(86)
b = 46 . . . . . . . simplify
It costs £46 to put an item of luggage in the hold.
Write a numerical expression to represent the rate of temperature change in degrees Fahrenheit per foot.
The numerical expression to represent the rate of temperature change in degrees Fahrenheit per foot is 0.14 degrees Celsius per foot.
What do you mean by numerical expression?
A group of numbers that have been written together using the arithmetic operations addition, subtraction, multiplication, and division is known as a numerical expression in mathematics. The number can be stated in a variety of ways, including verbally and numerically.
According to the given question,
To calculate the rate of temperature change in degrees Fahrenheit per foot,
We need to first convert degrees Fahrenheit to degrees Celsius.
To do this, we divide 100 by 5.9.
This yields a result of 0.14 degrees Celsius per foot.
Therefore, the numerical expression to represent the rate of temperature change in degrees Fahrenheit per foot is 0.14 degrees Celsius per foot.
To learn more about numerical expression, visit:
https://brainly.com/question/29778337?referrer=searchResults
#SPJ1
At a particular restaurant, each slider has
225 calories and each chicken wing has 70
calories. A combination meal with sliders
and chicken wings has a total of 10 sliders
and chicken wings altogether and
contains 1165 calories. Write a system of
equations that could be used to determine
the number of sliders in the combination
meal and the number of chicken wings in
the combination meal. Define the
variables that you use to write the system.
Let x be the number of sliders in the combination meal and y be the number of chicken wings in the combination meal. We can write the first equation in the system by equating the total number of sliders and chicken wings in the combination meal with the sum of the number of sliders and the number of chicken wings. Since the combination meal has 10 sliders and chicken wings altogether, we can write the equation x + y = 10.
The second equation in the system can be written by equating the total number of calories in the combination meal with the sum of the number of calories in the sliders and the number of calories in the chicken wings. Since each slider has 225 calories and each chicken wing has 70 calories, the total number of calories in the sliders is 225x and the total number of calories in the chicken wings is 70y. And since the combination meal contains 1165 calories, we can write the equation 225x + 70y = 1165.
Therefore, the system of equations that could be used to determine the number of sliders and chicken wings in the combination meal is x + y = 10 and 225x + 70y = 1165.
what is 1 + 1 i dont know it
Answer:
2
Step-by-step explanation:
1+1=2
XD
Answer:
2
Step-by-step explanation:
I know this is a joke but I don't care
Jorge needs to choose 3 people for his group project. There are 16 people in the class to choose from. How many different combinations of groups could he choose for his group project?
A. 4096
B. 560
C. 3360
D. 1120
The different combinations of groups for the group project is (b) 560
How to determine the different combinations of groups for the group project?From the question, we have the following parameters that can be used in our computation:
Total number of people, n = 16
Numbers to selection, r = 3 people
The number of ways of selection could be drawn is calculated using the following combination formula
Total = ⁿCᵣ
Where
n = 16 and r = 3
Substitute the known values in the above equation
Total = ¹⁶C₃
Apply the combination formula
ⁿCᵣ = n!/(n - r)!r!
So, we have
Total = 16!/(13! * 3!)
Evaluate
Total = 560
Hence, the number of ways is 560
Read more about combination at
brainly.com/question/11732255
#SPJ1
i need big help on this question please
make g the subject of the formula w=7-/sqrt g
Answer:
Below
Step-by-step explanation:
w = 7 - sqrt (g) ?? ( syntax is unclear in your post)
sqrt(g) = 7-w
g = (7-w)^2
explain the meaning of 3^1/4 * 3^1/4 * 3^1/4 * 3^1/4 = 3 in terms of fractional exponents or radicals
The answer, based on the information provided, fractional exponents will be 3.
What are some exponent fundamentals?A product in which the same integer is used repeatedly as a factor is represented by a number elevated to a power. The exponent provides the power, and the integer is referred to as the base. The exponent indicates the number of factors, while the base is the repeating factor (the multiplied number).
What is the initial exponents rule?That number will be the outcome! One of the simplest exponent laws is this one. You'll see that this rule doesn't merely apply to numerical data. We might, for example, elevate a statistic to the initial power.
Briefing:[tex]=3^{\frac{1}{4} }\times3^{\frac{1}{4} }\times3^{\frac{1}{4} }\times3^{\frac{1}{4} }\\=3^{\frac{1}{4}+{\frac{1}{4}+{\frac{1}{4}+{\frac{1}{4}\\\\=3^{1} \\=3[/tex]
To know more about exponents visit:
https://brainly.com/question/17724027
#SPJ1
(Scientific Notation in the Real World MC)
The length of a bacterial cell is about 3 x 10−6 m, and the length of an amoeba cell is about 4.5 x 10−4 m. How many times smaller is the bacterial cell than the amoeba cell? Write the final answer in scientific notation with the correct number of significant digits.
2 x 102
2 x 103
0.7 x 101
6.67 x 102
By dividing the length of bacteria cell to length of amoeba cell we find option (D) i.e 6.67x102 is the correct answer.
what is division?Division is an arithmetic operation that involves dividing one number (the dividend) by another number (the divisor) to find the quotient.
What are different arithmetic operators?Arithmetic operators are symbols that represent mathematical operations that can be performed on one or more operands. The most common arithmetic operators are:
Addition (+): Adds two operands and produces the sum.
Subtraction (-): Subtracts one operand from another and produces the difference.
Multiplication (*): Multiplies two operands and produces the product.
Division (/): Divides one operand by another and produces the quotient.
Modulo (%) : Divides one operand by another and produces the remainder.
Exponentiation (**): Raises one operand to the power of the other and produces the result.
To compare the sizes of the two cells, we need to divide the length of the bacterial cell by the length of the amoeba cell. The result is 3 x 10^−6 m / 4.5 x 10^−4 m = 0.67 x 10^−2.
So, the bacterial cell is approximately 0.67 x 10^−2 times smaller than the amoeba cell.
The correct answer is therefore (D) 6.67 x 10
To learn more about division visit:
https://brainly.com/question/21416852
#SPJ1
I need help, I’m trying to find the translation and scale factor.
Answer:
Translation: 4 to the right and 8 up.
Scale factor: 3
Step-by-step explanation:
If you move CDE 4 spaces to the right and 8 spaces up C and C' will match up. If you dilate (make bigger) CDE 3 times it will perfectly be C'D'E'.
"A number n equals 7 more than half the number"
The number 'n' is equal to 14
In the question, we have been given that the number n is equal to 7 more than half of the number 'n'.
So in these linear equation-solving types of problems, first of all, we convert the written sentence into an equation.
So the equation for the following problem statement is -
n = 7 + n/2
{since we have been given the number equals 7 more than half of the number }
Solving the equation we have,
n = 14.
We can easily see that 14 is the number which is 7 more than half of itself.
Know more about linear equation solving at - https://brainly.com/question/25858757
Is 1.765 an example of an integer?
Answer:
No.
Step-by-step explanation:
An integer is defined as a whole number.
The number given, "1.765", is not a whole number, as it includes the decimal .765. 1.765, as implied by decimal point, is a decimal number.
Learn more about integers, here:
https://brainly.com/question/12540626
Name
1. Consider the expression 7x² + 3x - 4.
Part A
Write the completely factored expression.
Answer:
After factorization the result is: (7x + 4)(x - 1).
Step-by-step explanation:
To factor 7x² + 3x - 4, we can use the following steps:
Look for two numbers that multiply to give the constant term (-4) and add to give the coefficient of the linear term (3). These two numbers are -4 and 1.
Use these numbers to create two binomials, one with a positive sign and one with a negative sign: (7x + 4) and (7x - 1).
Factor the quadratic expression by grouping:
(7x + 4)(x - 1)
We can check that this is the correct answer by multiplying the two binomials:
(7x + 4)(x - 1) = 7x² + 3x - 4
This is the original expression, so we have successfully factored it.
Note: Depending on the specific problem, there may be more than one way to factor the expression. This is just one possible solution.
An environmental engineer graphed the locations of a well and all of the drainage ditches in the vicinity. She positioned the well at (−6,7) and the farthest drainage ditch at (33,7). If each unit on the graph represents 1 foot, then how far away from the well is the farthest drainage ditch?
The farthest drainage ditch is 39 feet away from the well.
What is distance between two points?The length of the line segment bridging two points on a plane is known as the distance between the points.
The formula to find the distance between the two points is usually given by d=√{(x₂-x₁)² + (y₂-y₁)²}
Given, an environmental engineer graphed the locations of a well and all the drainage ditches in the vicinity.
She positioned the well at (−6,7) and the farthest drainage ditch at (33,7).
To find the distance:
Let d be the distance.
d = √{(x₂-x₁)² + (y₂-y₁)²}
Here, x₂ = 33, x₁ = -6, y₂ = 7 and y₁ = 7
Substituting the value to the distance formula,
d = √{(33+6)² + (7-7)²}
d = √{(39)² + (0)²}
d = √{(39)²
d = 39
Therefore, the value of d is 39.
To learn more about the distance between two points;
https://brainly.com/question/24485622
#SPJ1
Find the least common denominator (LCD) of 1/30 and 9/20
Answer: LCD = 60
Step-by-step explanation:
Rewriting input as fractions if necessary:
1/30, 9/20
For the denominators (30, 20) the least common multiple (LCM) is 60.
Therefore, the least common denominator (LCD) is 60.
Calculations to rewrite the original inputs as equivalent fractions with the LCD:
1/30 = 1/30 × 2/2 = 2/60
9/20 = 9/20 × 3/3 = 27/60
Ray AT bisects ∠MAR. If m∠MAT = (8x − 3)° and m∠RAT = (2x + 9)°, what is m∠MAR?
26°
13°
8°
2°
The measure of the angle ∠MAR will be equal to 26°. The correct option is A.
What is an angle bisector?In geometry, an angle bisector is a line that divides an angle into two equal angles. A bisector is something that divides a shape or object into two equal parts. An angle bisector is a ray that divides an angle into two equal parts of the same measurement.
Given that Ray AT bisects ∠MAR. If m∠MAT = (8x − 3)° and m∠RAT = (2x + 9)°,
The two angles ∠MAT and ∠RAT will be equal. Then calculate the value of x.
8x - 3 = 2x + 9
8x - 2x = 9 + 3
6x = 12
x = 2
The angle ∠MAR is calculated as,
∠MAR = 2 x ∠RAT
∠MAR = 2 x ( 2x + 9)
∠MAR = 2 x ( 2 x 2 + 9 )
∠MAR = 2 x ( 13 )
∠MAR = 26°
Option A is correct for the angle ∠MAR.
To know more about an angle bisector follow
https://brainly.com/question/24334771
#SPJ1
Answer:
A all the way
Step-by-step explanation:
Write a fraction for which the sum of the numerator and denominator is 20, and the value of the
fraction is equal to 2/3
Answer:
[tex]\dfrac{8}{12}[/tex]
Step-by-step explanation:
Let the unknown fraction be:
[tex]\dfrac{a}{b}[/tex]If the sum of the numerator and denominator is 20 then:
[tex]\implies a+b=20[/tex]
Rewrite the equation to isolate b:
[tex]\implies b=20-a[/tex]
If the fraction is equal to 2/3 then:
[tex]\implies \dfrac{a}{b}=\dfrac{2}{3}[/tex]
Cross multiply:
[tex]\implies 3a=2b[/tex]
Substitute the expression for b into the cross-multiplied equation and solve for a:
[tex]\implies 3a=2(20-a)[/tex]
[tex]\implies 3a=40-2a[/tex]
[tex]\implies 5a=40[/tex]
[tex]\implies a=8[/tex]
Substitute the found value of a into the equation for b and solve for b:
[tex]\implies b=20-8[/tex]
[tex]\implies b=12[/tex]
Therefore, the fraction for which the sum of the numerator and denominator is 20, and the value of the fraction is equal to 2/3 is:
[tex]\dfrac{8}{12}[/tex]solve the following inequality.4x-6<10
Answer:
x < 4
Step-by-step explanation:
4x - 6 < 10
4x < 16
x < 4
[tex]4x-6 < 10[/tex]
Add 6 to both sides:
[tex]4x-6+6 < 10+6[/tex]
[tex]4x < 16[/tex]
Divide both sides by 4:
[tex]\dfrac{4x}{4} < \dfrac{16}{4}[/tex]
[tex]\fbox{x} < \fbox{4}[/tex]
Compute the following and write in the form x+iy :
[tex]\frac{1+2i}{3-4i} + \frac{2-i}{5i}[/tex]
[tex] \Large{\boxed{\sf \dfrac{1 + 2i}{3 - 4i} + \dfrac{2 - i}{5i } = - \dfrac{2}{5}}} [/tex]
[tex] \\ [/tex]
Explanation:Given sum:
[tex] \sf \: \dfrac{1+2i}{3-4i} + \dfrac{2-i}{5i}[/tex]
[tex] \\ [/tex]
We can simplify the sum only if the denominators of the two fractions are the same. Since they are different, we have to multiply the numerator and the denominator of each fraction by the denominator of the other one.
[tex] \sf \: \dfrac{1+2i}{3-4i} + \dfrac{2-i}{5i} = \dfrac{5i(1 + 2i)}{5i(3 - 4i)} + \dfrac{(3 - 4i)(2 - i)}{(3 - 4i)5i} \\ \\ \\ \sf \: = \dfrac{5i + 10 {i}^{2} }{15i - 20 {i}^{2} } + \dfrac{6 - 3i - 8i + 4 {i}^{2} }{15i - 20 {i}^{2} } [/tex]
[tex] \\ [/tex]
Replace i² with -1:
[tex] \sf \dfrac{5i + 10 {i}^{2} }{15i - 20 {i}^{2} } + \dfrac{6 - 3i - 8i + 4 {i}^{2} }{15i - 20 {i}^{2} } \: \\ \\ \\ \\ \sf \: = \dfrac{5i + 10( - 1)}{15i - 20( - 1)} + \dfrac{ 6 - 11i + 4( - 1)}{15i - 20( - 1)} \\ \\ \\ \\ \sf = \dfrac{5i - 10}{20 + 15i} + \dfrac{2 - 11i}{20 + 15i} [/tex]
[tex] \\ [/tex]
Simplify the expression:
[tex] \sf = \dfrac{5i - 10}{20 + 15i} + \dfrac{2 - 11i}{20 + 15i} \\ \\ \\ \\ \sf \: = \dfrac{5i - 10 + 2 - 11i}{ 20 + 15i} = \sf \dfrac{ - 8 - 6i}{20 + 15i}[/tex]
[tex] \\ [/tex]
To write our solution in the x + iy form, also known as the algebraic form, we have to understand what the conjugate of a complex number is.
[tex] \textsf{Let z be our complex number, and} \: \overline{\sf z} \: \textsf{its conjugate.} [/tex]
[tex] \\ [/tex]
The conjugate of z, [tex] \overline{ \sf z}, [/tex] is the complex number formed of the same real part as z but of the opposite imaginary part.
Since x is the real part of z, and y is its imaginary part, this can be expressed as:
[tex] \sf If \: z = x + iy \:, then \: \overline{ \sf z} = x - iy [/tex]
[tex] \\ [/tex]
Now, we have to multiple both the denominator and the numerator of our fraction by the conjugate of its denominator:
[tex]\sf \dfrac{ - 8 - 6i}{20 + 15i} = \dfrac{( - 8 - 6i)( \overbrace{20 - 15i}^{ \overline{z}}) }{ (20 + 15i)( \underbrace{20 - 15i}_{ \overline{z}}) } \\ \\ \\ \sf = \dfrac{ - 160 + 120i - 120i + 90 {i}^{2} }{400 - 300i + 300i - 225 {i}^{2} } \\ \\ \\ \sf = \dfrac{ - 160 + 90 {i}^{2} }{400 - 225 {i}^{2} }[/tex]
[tex] \\ [/tex]
One more time, substitute -1 for i²:
[tex] \sf \: \dfrac{ - 160+ 90 {i}^{2} }{400 - 225 {i}^{2} } \: = \dfrac{ - 160 + 90( - 1)}{400 - 225( - 1)} \\ \\ \\ \sf = \boxed{\sf - \dfrac{ 250}{625}} [/tex]
[tex] \\ [/tex]
Finally, let's simplify our result:
[tex] \sf - \dfrac{250}{625} = - \dfrac{2 \times 125}{5 \times 125} = \boxed{ \boxed{ \sf - \dfrac{2}{5}}}[/tex]
[tex] \\ \\ [/tex]
▪️Learn more about the algebraic form of a complex number and the conjugate of a complex number here:
↣https://brainly.com/question/25633236
The question asked is in the image attached below.
Answers with nice explanation and step wise order will be marked brainliest.
Thanks for your kind help.
Answer:
[tex]y' = \dfrac{1 + x \sin x - x \cos x + \sin x + \cos x}{(\cos x - x)^2}[/tex]
Step-by-step explanation:
[tex] y = \dfrac{x + \sin x}{\cos x - x} [/tex]
Derivative of a quotient:
[tex] \dfrac{d}{dx} \dfrac{f(x)}{g(x)} = \dfrac{g'h - h'g}{h^2} [/tex]
Recall:
[tex] \dfrac{d}{dx} \sin x = \cos x [/tex]
[tex] \dfrac{d}{dx} \cos x = - \sin x [/tex]
[tex] y = \dfrac{x + \sin x}{\cos x - x} [/tex]
[tex] y' = \dfrac{dy}{dx} = \dfrac{(1 + \cos x)(\cos x - x) - [(- \sin x - 1)(x + \sin x)]}{(\cos x - x)^2} [/tex]
[tex]y' = \dfrac{\cos x - x + \cos^2 x - x \cos x - (-x \sin x - \sin^2 x - x - \sin x}{(\cos x - x)^2}[/tex]
[tex]y' = \dfrac{\cos x - x + \cos^2 x - x \cos x + x \sin x + \sin^2 x + x + \sin x}{(\cos x - x)^2}[/tex]
[tex]y' = \dfrac{\sin^2 x + \cos^2 x + x - x - x \cos x + x \sin x + \sin x + \cos x}{(\cos x - x)^2}[/tex]
[tex]y' = \dfrac{1 + x \sin x - x \cos x + \sin x + \cos x}{(\cos x - x)^2}[/tex]