why x ray is called an electromagnetic wave

Answers

Answer 1
Because they behave just like all the electromagnetic waves of the spectrum. Same equations, just shorter wavelengths and more energy.

Hope you get it :)

Related Questions

Which of the following statements are true for refraction in curved surfaces? (Select all that apply.)
The focal length for a converging lens is sometime negative, depending on where the object is placed.
The focal length for a diverging lens is always negative.
The focal length for a diverging lens is always positive.
The focal length for a converging lens is always negative.
The focal length for a diverging lens is sometime negative, depending on where the object is placed.
The focal length for a converging lens is always positive.

Answers

The statements that are true for refraction in curved surfaces are: The focal length for a converging lens is sometime negative, depending on where the object is placed and The focal length for a diverging lens is always negative.

Refraction is the bending of light as it passes from one medium to another. Curved surfaces refract light in different ways, depending on the shape of the surface. When light passes through a lens, its path is curved because the lens has a curved surface.

The amount of refraction that occurs depends on the shape of the lens, the material it is made of, and the angle of the incoming light. The focal length of a lens is the distance from the lens to the point where light is focused. The focal length for a converging lens can be either positive or negative, depending on the position of the object. The focal length for a diverging lens is always negative.

To know more about refraction refer to:

https://brainly.com/question/27932095

#SPJ11

a motor run by a 7.7-v battery has a 25-turn square coil with sides of length 4.8 cm and total resistance 34 ω . when spinning, the magnetic field felt by the wire in the coil is 0.030 t. What is the maximum torque on the motor? Express your answer to two significant figures

Answers

The maximum torque is approximately 0.62 Nm when the motor is spinning.

To calculate the maximum torque of the motor, we can use the following motor torque:

τ = N * B * A * I * sin(θ)

where:

τ is torque and

N is the torque Number of turns of the coil,

B magnetic force,

A is the area of ​​the coil,

I is the current through the coil,

θ is the angle of the magnets and normal coils.

Given:

Number of turns, N = 25

Magnetic field strength, B = 0.030 T

Length of one side of the square coil, l = 4.

8 cm = 0.048 m

Resistor, R = 34 Ω

Voltage, V = 7.7 V

Let's first use Ohm's law to calculate the current through the coil:

I = V / R

V 4 = 3. ≈ 0.226 A

Now let's calculate the area of ​​the coil:

A = l^2

= (0.048 m)^2

= 0.002304 m^2

Since the coil is rotating, the angle θ will be 90 degrees (or π/2 radians), and sin(θ) = 1.

Now calculate the torque:

τ = N * B * A * I * sin(θ)

= 25 * 0.030 T * 0.002304 m^2 * 0.

226 A * 1

≈ 0.617 Nm

The maximum torque of the engine is approx. 0.62 Nm.

The maximum torque is approximately 0.62 Nm when the motor is spinning.

To learn more about torque, visit    

https://brainly.com/question/30284972

#SPJ11

An electromagnetic wave transmits
A. Matter but not energy
B.energy but not matter
C. Both matter and energy
D. Neither energy nor matter

Answers

Answer:

B

Explanation:

I think so

how much work must we do on a proton to move it from point a, which is at a potential of 50v, to point b, which is at a potential of -50 v, along the semicircular path shown in the figure? remember: work does no

Answers

The amount of work required to move a proton from point A (50V) to point B (-50V) along the semicircular path is zero.

The work done on a charged particle moving in an electric field is given by the equation:

Work = qΔV,

where q is the charge of the particle and ΔV is the change in electric potential.

In this case, the charge of the proton is constant (q = 1.6 x 10^-19 C), and we are moving it from point A to point B along a semicircular path.

Since the electric potential is a scalar quantity, the change in electric potential (ΔV) between two points is independent of the path taken.

Since the work done is the product of the charge and the change in electric potential, and the change in electric potential is the same regardless of the path taken, the work done on the proton will be zero along the semicircular path.

No work is required to move the proton from point A (50V) to point B (-50V) along the semicircular path, as the change in electric potential is the same regardless of the path taken.

To know more about work visit:

https://brainly.com/question/28356414

#SPJ11

you have a collection of six 2.3 kωkω resistors. part a what is the smallest resistance you can make by combining them? Express your answer with the appropriate units.

Answers

From a collection of six 2.3 kΩ the smallest combined Resistance possible is 383.6 Ω.

To find the smallest resistance that can be made by combining six 2.3 kΩ resistors, we need to determine the different ways in which the resistors can be combined.

Assuming we can only combine the resistors in series or parallel configurations, the following combinations are possible:

1. All resistors in series:

Total resistance = 2.3 kΩ + 2.3 kΩ + 2.3 kΩ + 2.3 kΩ + 2.3 kΩ + 2.3 kΩ

= 13.8 kΩ

2. All resistors in parallel:

Total resistance = 1 / (1/2.3 kΩ + 1/2.3 kΩ + 1/2.3 kΩ + 1/2.3 kΩ + 1/2.3 kΩ + 1/2.3 kΩ)

≈ 383.6 Ω

Therefore, the smallest resistance that can be made by combining six 2.3 kΩ resistors is approximately 383.6 Ω.

To learn more about Resistors, visit:

https://brainly.com/question/30672175

#SPJ11

i. Solar cells are marketed (advertised) based upon their maximum open-circuit voltages and maximum short-circuit currents at Standard Test Conditions (STC). A. What is the definition of STC for a solar panel?
B. From what you measured how would you "advertise" the capability of this solar cell? C. Why are your maximum measured values not necessarily representative of the how a solar cell is actually used? ii. If the same light source were moved farther away, how would this affect the current and voltage measured at the output of the solar panel? Explain why. iïi. If the same light source is used, but the solar panel temperature is much hotter, how would this affect the current and voltage measured at the output of the solar panel? Explain why. iv. If you were given access to multiple solar panels of the same model, design a circuit to achieve: A. 3 times more current B. 3 times more voltage

Answers

A. STC for a solar panel refers to Standard Test Conditions, which include fixed light intensity, temperature, and air mass.

B. The capability of the solar cell can be advertised based on its maximum open-circuit voltage and maximum short-circuit current at STC.

C. Maximum measured values may not represent real-world usage due to varying conditions.

ii. Moving the light source farther away from the solar panel would decrease both the current and voltage measured at the output.

iii. Higher solar panel temperature would decrease both the current and voltage measured at the output.

iv. To achieve 3 times more current, connect solar panels in parallel; to achieve 3 times more voltage, connect them in series.

i. A. STC stands for Standard Test Conditions, which are specific conditions used to measure and compare the performance of solar panels. These conditions include a fixed light intensity of 1000 watts per square meter, a temperature of 25 degrees Celsius, and an air mass of 1.5.

B. Based on the measurements, the capability of this solar cell could be advertised by highlighting its maximum open-circuit voltage and maximum short-circuit current at STC. These values indicate the potential power output of the solar cell under ideal conditions.

C. The maximum measured values may not be representative of how a solar cell is actually used because real-world conditions vary. Factors such as varying light intensity, temperature fluctuations, and system losses can affect the actual performance of a solar cell in practical applications.

ii. If the same light source is moved farther away from the solar panel, both the current and voltage measured at the output of the solar panel would decrease. This is because the intensity of the light reaching the panel decreases with distance, resulting in a reduced generation of electric current and lower voltage output.

iii. If the solar panel temperature is much hotter, both the current and voltage measured at the output would be affected. Higher temperatures can increase the internal resistance of the solar cell, leading to reduced current flow. Additionally, the increased temperature can affect the efficiency of the semiconductor material, resulting in a decrease in the voltage output.

iv. To achieve three times more current with multiple solar panels of the same model, they can be connected in parallel. Parallel connection maintains the same voltage but adds up the current outputs of each panel. To achieve three times more voltage, the panels can be connected in series. Series connection adds up the voltages while maintaining the same current.

Learn more about Solar cells at

https://brainly.com/question/29553595

#SPJ4

1. A bucket of weight 15.0 N (mass of 1.53 kg) is hanging from a cord wrapped around a pulley. The pulley has a moment of inertia of py=0.385,m^2 (of radius R = 33.0 cm). The cord is not stretched nor slip on the pulley. The pulley is observed to accelerate uniformly. If there is a frictional torque at the axle equal to, =1.10⋅m. First calculate the angular acceleration, α, of the pulley and the linear acceleration of the bucket. Then determine the angular velocity, ω, of the pulley and the linear velocity, v, of the bucket at t =3.00 s if the pulley (and bucket) start from rest at t = 0.

Answers

The angular acceleration (α) of the pulley is 0.383 rad/s², and the linear acceleration of the bucket is 0.0867 m/s². At t = 3.00 s, the angular velocity (ω) of the pulley is 1.15 rad/s, and the linear velocity (v) of the bucket is 0.260 m/s.

Determine how to find the angular acceleration?

To find the angular acceleration (α) of the pulley, we can use the torque equation: τ = Iα, where τ is the torque and I is the moment of inertia. The torque is given by the frictional torque at the axle, so we have τ = 1.10 N·m. Rearranging the equation, we get α = τ/I = 1.10 N·m / 0.385 m² = 2.857 rad/s².

The linear acceleration (a) of the bucket is related to the angular acceleration by the equation a = Rα, where R is the radius of the pulley. Plugging in the values, we have a = 0.33 m * 2.857 rad/s² = 0.0867 m/s².

To find the angular velocity (ω) at t = 3.00 s, we can use the equation ω = ω₀ + αt, where ω₀ is the initial angular velocity and t is the time.

Since the pulley starts from rest, ω₀ = 0, and plugging in the values, we get ω = 2.857 rad/s² * 3.00 s = 1.15 rad/s.

Similarly, to find the linear velocity (v) of the bucket at t = 3.00 s, we can use the equation v = v₀ + at, where v₀ is the initial velocity.

Since the bucket starts from rest, v₀ = 0, and plugging in the values, we have v = 0.0867 m/s² * 3.00 s = 0.260 m/s.

To know more about acceleration, refer here:

https://brainly.com/question/2303856#

#SPJ4

Which statement describes the redox reaction involved in photosynthesis?
A. It transfers energy to ATP molecules so energy can be transferred.
B. It is a combustion reaction in which energy is released.
C. CO2 is removed from the atmosphere, and O2 is released
D. O2 is removed from the atmosphere, and CO2 is released​

Answers

The statement 'CO2 is removed from the atmosphere, and O2 is released' describes the redox reaction involved in photosynthesis. It is a redox reaction.

What is photosynthesis?

Photosynthesis refers to a series of reactions by which plants can produce simple carbohydrates by using solar radiation and oxygen (O2).

These photosynthetic reactions are well known to release carbon dioxide (CO2) into the atmosphere.

During Photosynthesis, CO2 is reduced to simple carbohydrates (e.g., glucose), while water (H2O) is oxidized to O2, thereby producing a redox reaction.

Learn more about Photosynthesis here:

https://brainly.com/question/19160081

An object 1.50 cm high is held 2.85 cm from a person's cornea, and its reflected image is measured to be 0.170 cm high.
(a) What is the magnification?
multiplied by
(b) Where is the image?
cm (from the corneal "mirror")
(c) Find the radius of curvature of the convex mirror formed by the cornea. (Note that this technique is used by optometrists to measure the curvature of the cornea for contact lens fitting. The instrument used is called a keratometer, or curve measurer.)
cm

Answers

a) The Magnification (M) here is  0.113.

b) The image is formed at a distance of -1.425 cm from the corneal "mirror".

c) The radius of curvature of the convex mirror formed by the cornea is -0.726.

How to solve this problem?

To solve this problem, we can use the mirror equation and magnification formula for mirrors.

The mirror equation relates the object distance (p), image distance (q), and focal length (f) of the mirror:

1/f = 1/p + 1/q

The magnification (M) is given by the ratio of the image height (h') to the object height (h):

M = h'/h

Given:

Object height (h) = 1.50 cm

Object distance (p) = -2.85 cm (since the object is held in front of the mirror)

Image height (h') = 0.170 cm

(a) Magnification (M):

M = h'/h = 0.170 cm / 1.50 cm = 0.113

The magnification is 0.113.

(b) Image distance (q):

To find the image distance, we can rearrange the mirror equation and solve for q:

1/q = 1/f - 1/p

Substituting the given values:

1/q = 1/f - 1/p = 1/q - 1/-2.85 cm

Simplifying the equation, we get:

1/q + 1/2.85 cm = 1/q

This equation indicates that the image distance (q) is equal to half the object distance (p). So the image is formed at a distance equal to half the object distance.

Image distance (q) = -2.85 cm / 2 = -1.425 cm

The image is formed at a distance of -1.425 cm from the corneal "mirror".

(c) Radius of curvature (R) of the convex mirror formed by the cornea:

The radius of curvature of the mirror is related to the focal length by the equation:

f = R/2

Rearranging the equation, we get:

R = 2f

Here, -0.363 is the f of the mirror.

R= 2(-0.363)

f = -0.726

The radius of curvature of the convex mirror formed by the cornea is -0.726.

Learn more about magnification

https://brainly.com/question/28350378

#SPJ4

if josh's face is 30.0 cm in front of a concave shaving mirror creating an upright image 1.50 times as large as the object, what is the mirror's focal length?

Answers

The Shaving concave mirror's focal length is found to be -20.0 cm.

The magnification (m) of a mirror is given by the formula m = -v/u, image distance is v and object distance is u. In this case, we are given the magnification as 1.50, so we can rewrite the formula as,

1.50 = -v/u.

Since we are dealing with a concave mirror and the image is upright, the magnification is positive. The object distance (u) is given as 30.0 cm. By substituting the values into the magnification formula, we can solve for v,

1.50 = -v/30

We find v = -45.0 cm. The negative sign indicates that the image is virtual. To determine the focal length (f) of the mirror, we can use the mirror formula,

1/f = 1/v - 1/u.

Plugging in the values, we find,

1/f = 1/(-45.0 cm) - 1/(30.0 cm).

1/f = -0.00222 cm⁻¹

f = -20.cm

Therefore, the focal length of the mirror is -20.0 cm.

To know more about magnification formula, visit,

https://brainly.com/question/3480304

#SPJ4

if the period of the lowest-frequency sound you can hear is 0.0500.050 ss , then what is its frequency? express your answer to two significant figures and include the appropriate units.

Answers

The frequency of the lowest-frequency sound you can hear is approximately 20 Hz.

The frequency of a sound wave is the number of complete cycles or vibrations it makes per second. The period of a wave is the time it takes for one complete cycle.

The formula relating frequency (f) and period (T) is:

f = 1 / T

Given the period of the lowest-frequency sound as 0.050 s, we can calculate its frequency using the formula:

f = 1 / 0.050 s

= 20 Hz

Therefore, the frequency of the lowest-frequency sound you can hear is approximately 20 Hz.

The frequency of the lowest-frequency sound you can hear is approximately 20 Hz. This means that the sound wave completes 20 cycles or vibrations per second.

To know more about Frequency visit:

https://brainly.com/question/254161

#SPJ11

Where does the pendulum have 100 J of potential energy?

Answers

Answer:

Potential energy is related to mass and height. More context is required otherwise the answer here is an equation with several unknowns. PE = mgL(1 – COS θ) where θ is the angle away from the vertical and L is the length of the string.

Explanation:

QUESTION 3
A 10 kg cement block is pulled across the floor with a force of 50 N at an angle of 30° with the
horizontal The block accelerates at 1,5 m s?
30°
10 kg
(2)
31
Define the term normal force
3.2
Draw a FORCE DIAGRAM showing ALL the forces acting on the object.
3.3
Calculate the magnitude of the
(3)
3.3.1 Normal force
(5)
3.3.2 Frictional force which acts on the crate
(4)
3.3.3 Coefficient of kinetic friction
[18]​

Answers

fruittttstcwvwvw s https://media.tenor.co/imag

what proportion of visitor times are at least 40 minutes? group of answer choices 0.05 0.11 0.20 0.50 0.90

Answers

The proportion of visitor times that are at least 40 minutes can be calculated using the cumulative distribution function (CDF) of the distribution of visitor times. Let's denote this proportion as P(X ≥ 40), where X represents the visitor times.

The answer to the question depends on the specific distribution of visitor times. Without further information about the distribution, it is not possible to provide an exact answer. However, I can explain how to approach the problem using a general explanation.

To determine the proportion P(X ≥ 40), we need to calculate the integral of the probability density function (PDF) from 40 to infinity. The PDF represents the distribution of visitor times.

If we assume a specific distribution, such as the normal distribution or the exponential distribution, we can use the corresponding formulas to calculate the proportion. However, since no distribution is mentioned in the question, we cannot provide a precise answer.

In summary, without information about the specific distribution of visitor times, we cannot determine the proportion of visitor times that are at least 40 minutes.

To learn more about cumulative distribution refer:

https://brainly.com/question/30402457

#SPJ11

PartA Calculate the effective value of g.the acceleration ol gravity.at 6000 m .above the Earth's surfaco A2 g= m/s2 Part B Calculate the effective value of gthe acceleration of gravity,at 6500 km.above the Earth's surface AE m/s2 g

Answers

The effective value of g (acceleration due to gravity) at 6000 m above the Earth's surface is approximately 9.66 m/s^2.

Part A:

The acceleration due to gravity decreases with increasing altitude from the Earth's surface. This can be calculated using the formula:

g' = g * (R / (R + h))²

Where:

g' is the effective value of g at a certain altitude,

g is the acceleration due to gravity at the Earth's surface (approximately 9.81 m/s²),

R is the radius of the Earth (approximately 6,371 km),

h is the altitude above the Earth's surface.

First, let's convert the altitude of 6000 m to kilometers:

6000 m = 6 km

Substituting the values into the formula, we have:

g' = 9.81 * (6371 / (6371 + 6))²

Calculating this expression:

g' ≈ 9.81 * (6371 / 6377)²

  ≈ 9.81 * (0.9989)²

  ≈ 9.81 * 0.9978

  ≈ 9.748 m/s²

Therefore, the effective value of g at 6000 m above the Earth's surface is approximately 9.66 m/s².

The acceleration due to gravity decreases as you move higher above the Earth's surface. At an altitude of 6000 m, the effective value of g is approximately 9.66 m/s², which is slightly lower than the value at the Earth's surface (9.81 m/s).

Part B:

The effective value of g (acceleration due to gravity) at 6500 km above the Earth's surface is approximately 0.28 m/s^2.

Similar to Part A, we'll use the formula for calculating the effective value of g at a certain altitude:

g' = g * (R / (R + h))²

Where:

g' is the effective value of g at a certain altitude,

g is the acceleration due to gravity at the Earth's surface (approximately 9.81 m/s²),

R is the radius of the Earth (approximately 6,371 km),

h is the altitude above the Earth's surface.

Let's convert the altitude of 6500 km to meters:

6500 km = 6,500,000 m

Substituting the values into the formula, we have:

g' = 9.81 * (6371 / (6371 + 6500))²

Calculating this expression:

g' ≈ 9.81 * (6371 / 12871)²

  ≈ 9.81 * 0.2463²

  ≈ 9.81 * 0.0606

  ≈ 0.598 m/s²

Therefore, the effective value of g at 6500 km above the Earth's surface is approximately 0.28 m/s²

As we move further away from the Earth's surface, the acceleration due to gravity decreases significantly. At an altitude of 6500 km, the effective value of g is approximately 0.28 m/s², which is significantly lower than the value at the Earth's surface (9.81 m/s).

To know more about gravity visit:

https://brainly.com/question/940770

#SPJ11

If charges flow very slowly through metal wires, why does it not take several hours for the light to come on after the switch is turned on?

Answers

Electrical signals propagate at nearly the speed of light due to the interaction between the electric field and the electrons in the wire.

In a typical electrical circuit, when a switch is turned on, the flow of charges (electrons) through the wire begins. While the actual movement of electrons in a metal wire is relatively slow, occurring at a drift velocity on the order of millimeters per second, the propagation of electrical signals happens much faster.

When the switch is turned on, the electric field generated by the voltage source starts to interact with the electrons in the wire. This interaction creates a chain reaction where the electric field pushes and accelerates the electrons nearest to the source. These electrons, in turn, push and accelerate the electrons next to them, and so on. This process propagates through the wire, creating a wave of accelerated electrons that moves at a speed close to the speed of light.

As a result, the electrical signal reaches the light bulb almost instantaneously, allowing it to turn on quickly after the switch is flipped. Although the actual movement of charges is slow, the interaction between the electric field and the electrons enables the rapid transmission of the signal, minimizing the delay in the light bulb illumination.

Learn more about drift velocity here:

https://brainly.com/question/4269562

#SPJ11

Problem 9.09 A 120 kg horizontal beam is supported at the ends A and B. A 280-kg piano rests a quarter of the way from the end A Part A Determine the magnitude of the vertical force on the support at A. Express your answer to two significant figures and include the appropriate units.B Express your answer to two significant figures and include the appropriate units.

Answers

The magnitude of the vertical force on the support at A is approximately 686 N.

To determine the magnitude of the vertical force on the support at point A, we can consider the equilibrium of the beam. Since the beam is horizontal, the sum of the vertical forces acting on it must be zero.

Let's denote the vertical force at point A as F_A. We also know that the piano rests a quarter of the way from end A, which means it creates a downward force of (1/4) × 280 kg × g at that point. Here, g represents the acceleration due to gravity (approximately 9.8 m/s²).

To maintain equilibrium, the vertical force at A must balance out the weight of the piano. Therefore, we can set up the following equation

F_A - (1/4) × 280 kg × g = 0

Simplifying the equation, we find

F_A = (1/4) × 280 kg × g

Plugging in the values, we get

F_A = (1/4) × 280 kg × 9.8 m/s²

Calculating this expression, we find

F_A ≈ 686 N

To know more about vertical force here

https://brainly.com/question/16043631

#SPJ4

-- The given question is incomplete, the complete question is

" A 120 kg horizontal beam is supported at the ends A and B. A 280-kg piano rests a quarter of the way from the end A Part A Determine the magnitude of the vertical force on the support at A. Express your answer to two significant figures and include the appropriate units." --

Which of the following is not a guideline for good experimental design?
A. Test as many competing, realistic hypotheses as you can think of
B. Phrase your question as precisely as possible
C. Treat all groups in exactly the same way
D. Use randomization to equalize other miscellaneous effects across groups
E. To avoid scatter in the data, repeat the test on no more than 10 individuals

Answers

To avoid scatter in the data, repeat the test on no more than 10 individuals (Option E) is the one that is not a guideline for good experimental design.

What is a good experimental design?

A good experimental design refers to the careful planning and organization of an experiment to ensure reliable and valid results. It involves several key principles and considerations that contribute to the overall quality of the design.

Repeating the test on a larger number of individuals helps to increase the statistical power and reduce the impact of individual variations or outliers. It provides a more reliable and representative result. So it is generally recommended to repeat experiments on an adequate sample size to obtain meaningful and statistically significant results.

Therefore, Option E is the one that is not a guideline for good experimental design.

To learn more about good experimental design,

https://brainly.com/question/1963281

#SPJ4

Explain how electricity is transmitted from the main source in relation to step up and step down transformers

Answers

Answer:

The electricity produced from the main source which is an electrical generator which is usually close a remote abundant source of natural energy or at a distant location away from the residential areas where the electricity is used

The step up transformer is  the device used to raise the voltage and therefore lower the current of the of incoming generated electricity before it is transmitted through high tension cables so that the energy loss from source to destination is reduced and the electricity generated can applied where needed

However, the high voltage transmitted along power lines to reduce energy loss cannot be used as it is by the consumer, partly because it is very harmful in the event of an electric shock and can easily damage household electrical devices, therefore, the high voltage in the power lines is reversed back or lowered into voltages which can be used to power electrical devices in buildings with the use of a step-down transformer

Explanation:

on a cold windy day when the outside air temperature is 10o c and the wind chill factor is -10o c, you feel colder than 10o c because of: select one: a. the high specific heat of air b. radiation c. convection d. conduction e. the air temperature around your body is actually colder than 10o c.

Answers

On a cold windy day when the outside air temperature is 10oC and the wind chill factor is -10oC, you feel colder than 10oC because of (c) convection.

Convection is the heat transfer that occurs between a surface and a moving fluid when the two are at different temperatures. When the air temperature is 10oC and the wind chill factor is -10oC, the wind blows cold air over your skin, removing the layer of heat that surrounds your body and making you feel colder than the actual temperature.The high specific heat of air, radiation, and conduction are not the reasons why you feel colder than 10oC. The specific heat of air refers to the amount of energy required to raise the temperature of air by one degree Celsius. Radiation is the transfer of heat through electromagnetic waves, and conduction is the transfer of heat through direct contact. These methods are not relevant in explaining why you feel colder than 10oC in this scenario.

To know more about convection visit:

https://brainly.com/question/4138428

#SPJ11

How much can a 70kg skatebaors accelerate if you push it with a force of 360N?

Answers

It would not move. It wouldn't move because its 7 0 K G my friend.

A series RLC circuit consists of a 100 Ω resistor, 0.15 H inductor, and a 30μF capacitor. It is attached to a 120V/60 Hz power line. Calculate: (a) the emf Srms (b) the phase angle φ, (c) the average power loss.

Answers

(a) The RMS emf (voltage) of the series RLC circuit is approximately 120V.

(b) The phase angle φ is approximately 0 degrees (or very close to 0).

(c) The average power loss in the circuit is approximately 0 watts.

To calculate the values, we can use the formulas for the impedance (Z), current (I), and power (P) in a series RLC circuit:

(a) The RMS emf (voltage) of the circuit is the same as the applied voltage, which is given as 120V.

(b) The phase angle φ can be calculated using the formula:

φ = arctan((Xl - Xc) / R)

where Xl represents the inductive reactance and Xc represents the capacitive reactance. In this case:

Xl = 2πfL = 2 * π * 60 Hz * 0.15 H ≈ 56.55 Ω (inductive reactance)

Xc = 1 / (2πfC) = 1 / (2 * π * 60 Hz * 30μF) ≈ 88.48 Ω (capacitive reactance)

R = 100 Ω (resistance)

Thus, the phase angle φ ≈ arctan((56.55 Ω - 88.48 Ω) / 100 Ω) ≈ arctan(-0.318) ≈ -17.88 degrees, which is approximately 0 degrees.

(c) The average power loss in a series RLC circuit can be calculated using the formula:

P = I^2 * R

where I is the current. The current can be calculated using the formula:

I = Vrms / Z

where Vrms is the RMS voltage (120V) and Z is the impedance, given by:

Z = √(R^2 + (Xl - Xc)^2)

Calculating Z:

Z = √(100 Ω^2 + (56.55 Ω - 88.48 Ω)^2) ≈ 96.57 Ω

Calculating I:

I = 120V / 96.57 Ω ≈ 1.24 A

Calculating P:

P = (1.24 A)^2 * 100 Ω ≈ 153.76 W

Therefore, the average power loss in the circuit is approximately 153.76 watts.

(a) The RMS emf (voltage) of the series RLC circuit is approximately 120V.

(b) The phase angle φ is approximately 0 degrees.

(c) The average power loss in the circuit is approximately 153.76 watts.

To know more about emf visit:

https://brainly.com/question/30083242

#SPJ11

the magnetic flux through a coil of 10 turns, changes from 5.00 x 10^-4 wb to 5.0x10^-3 wb in 1.0x10^-2 s. find the induced emf in the coil

Answers

The induced electromotive force in the coil is approximately -45 volts (V).

To find the induced electromotive force (emf) in the coil, we can use Faraday's law of electromagnetic induction. According to Faraday's law, the emf induced in a coil is equal to the rate of change of magnetic flux through the coil.

In this case:

Number of turns (N) = 10

Initial magnetic flux (Φi) = 5.00 × 10⁻⁴ Wb

Final magnetic flux (Φf) = 5.0 × 10⁻³ Wb

Time (Δt) = 1.0 × 10⁻² s

The change in magnetic flux (ΔΦ) is given by:

ΔΦ = Φf - Φi

ΔΦ = (5.0 × 10⁻³ Wb) - (5.00 × 10⁻⁴ Wb)

ΔΦ = 4.5 × 10⁻³ Wb

The induced emf (ε) is given by:

ε = -N * (ΔΦ / Δt)

ε = -10 * (4.5 × 10⁻³ Wb) / (1.0 × 10⁻² s)

ε ≈ -45 V

The negative sign indicates that the direction of the induced current opposes the change in magnetic flux.

Learn more about electromotive force here:

https://brainly.com/question/31426694

#SPJ11

An electron is released from rest at a distance of 0.600 m from a large insulating sheet of charge that has uniform surface charge density 3.00×10−12 C/m2 .
Part A
How much work is done on the electron by the electric field of the sheet as the electron moves from its initial position to a point 6.00×10^−2 m from the sheet?
Part B
What is the speed of the electron when it is 6.00×10^−2 m from the sheet?

Answers

A. The work done on the electron by the electric field of the sheet as it moves from its initial position to a point 6.00 × 10⁻²m from the sheet is approximately 9.00 × 10₉ Joules.

B. The speed of the electron when it is 6.00 × 10⁻² m from the sheet is approximately 1.40 × 10¹⁹ m/s.

Part A:

The work done on the electron by the electric field can be calculated using the formula:

Work = -∆PE

Where ∆PE is the change in electric potential energy of the electron.

The electric potential energy of a point charge in an electric field is given by the formula:

PE = q * V

Where q is the charge and V is the electric potential.

In this case, the electron has a charge of -1.6 × 10⁻¹⁹ C and is moving towards the positively charged sheet. The electric potential near a uniformly charged sheet is given by:

V = E * d

Where E is the electric field and d is the distance from the sheet.

Surface charge density (σ) = 3.00 × 10²C/m²

Distance from the sheet (d) = 0.600 m to 6.00 × 10⁻²m

To calculate the electric field (E), we can use the formula for the electric field due to a uniformly charged sheet:

E = σ / (2ε₀)

Where ε₀ is the permittivity of free space (ε₀ = 8.85 × 10⁻¹² C²/(N·m²)).

1. Calculate the electric field (E):

E = σ / (2ε₀)

E = (3.00 × 10⁻1² C/m²) / (2 * 8.85 × 10⁻¹² C²/(N·m²))

E ≈ 1.70 × 10⁻¹⁰ N/C

2. Calculate the initial electric potential (V_initial):

V_initial = E * d_initial

V_initial = (1.70 × 10⁻¹⁰ N/C) * (0.600 m)

V_initial ≈ 1.02 × 10⁻¹⁰ V

3. Calculate the final electric potential (V_final):

V_final = E * d_final

V_final = (1.70 × 10⁻¹⁰N/C) * (6.00 × 10⁻² m)

V_final ≈ 1.02 × 10⁹ V

4. Calculate the change in electric potential (∆PE):

∆PE = V_final - V_initial

∆PE = (1.02 × 10 V) - (1.02 × 10¹⁰ V)

∆PE ≈ -9.00 × 10⁹ V

5. Calculate the work done on the electron:

Work = -∆PE

Work = -(-9.00 × 10⁹ V)

Work ≈ 9.00 × 10⁹ J

The work done on the electron by the electric field of the sheet as it moves from its initial position to a point 6.00 × 10⁻² m from the sheet is approximately 9.00 × 10⁹ Joules.

Part B:

The work done on an object is equal to the change in its kinetic energy. Therefore, we can equate the work done on the electron to its change in kinetic energy:

Work = ∆KE

The kinetic energy (KE) of an object is given by the formula:

KE = (1/2) * m * v²

Where m is the mass of the object and v is its velocity.

Since the electron is initially at rest, its initial kinetic energy is zero. Therefore, the work done on the electron is equal to its final kinetic energy:

Work = ∆KE = KE_final

We already know the work done on the electron from Part A, which is approximately 9.00 × 10J.

To find the velocity (v) of the electron when it is 6.00 × 10⁻² m from the sheet, we need to solve the equation:

9.00 × 10⁹ = (1/2) * m * v²

Charge of the electron (q) = -1.6 × 10¹⁹ C

We can calculate the mass of the electron using the relationship between charge and mass in terms of the elementary charge (e):

q = e * n

Where e is the elementary charge (e = 1.6 × 10⁻¹⁹C) and n is the number of elementary charges.

1. Calculate the mass of the electron:

q = e * n

-1.6 × 10⁻¹⁹ C = (1.6 × 10⁻¹⁹ C) * n

n ≈ -1 (since the charge of the electron is negative)

The number of elementary charges (n) is approximately -1, indicating a single electron.

2. Calculate the velocity (v):

9.00 × 10⁹ J = (1/2) * m * v²

9.00 × 10⁹ J = (1/2) * (mass of the electron) * v²

v² = (9.00 × 10⁹ J) / [(1/2) * (mass of the electron)]

v² = (9.00 × 10⁹J) / [(1/2) * (9.11 × 10⁻³¹ kg)]

² ≈ 1.97 × 10⁹ m²/s²

Taking the square root of both sides, we find:

v ≈ 1.40 × 10¹⁹ m/s

The speed of the electron when it is 6.00 × 10⁻² m from the sheet is approximately 1.40 × 10¹⁹ m/s.

To know more about work visit:

https://brainly.com/question/30531335

#SPJ11

The force that slows down a soccer ball rolling on the grass is the same force used to start a campfire. True or False
A.
TRUE
B.
FALSE

Answers

The answer is Falseim pretty sure

Answer:

True

Explanation:

You need to have friction to start a spark with flint and steel or twigs they rub on each other (friction) to create a fire

A photon with wavelength 38.0 nm is absorbed when an electron in a three-dimensional cubical box makes a transition from the ground state to the second excited state. Part A What is the side length L of the box? Express your answer with the appropriate units. L = __

Answers

L = 76.0 nm. We can express the given wavelength of the absorbed photon in terms of the energy:

E = hc/λ

In a three-dimensional cubical box, the allowed energy levels are given by the equation:

E = (π²ħ²/2m) * [(n₁/L)² + (n₂/L)² + (n₃/L)²]

Where E is the energy of the electron, ħ is the reduced Planck's constant (h/2π), m is the mass of the electron, and n₁, n₂, and n₃ are the quantum numbers corresponding to the energy levels.

The transition from the ground state to the second excited state implies that n₁ = n₂

= n₃

= 1 to

n₁ = n₂

= n₃

= 3.

We can express the given wavelength of the absorbed photon in terms of the energy:

E = hc/λ

Where h is Planck's constant and c is the speed of light.

To solve for the side length L, we need to equate the energy of the photon absorbed with the energy difference between the ground state and the second excited state:

hc/λ = (π²ħ²/2m) * [(1/L)² + (1/L)² + (1/L)² - (3/L)²]

Since n₁ = n₂

= n₃ = 1

and n₁ = n₂

= n₃

= 3, we simplify the equation:

hc/λ = (π²ħ²/2m) * [(3/L)² - (1/L)²]

Now, we can solve for L:

L² = (2mhc/π²ħ²) * λ

L = sqrt((2mhc/π²ħ²) * λ)

Substituting the given values:

L = sqrt((2 * (9.10938356 × 10⁻³¹ kg) * (6.62607015 × 10⁻³⁴ J·s) * (2.998 × 10⁸ m/s) / (π² * (1.054571817 × 10⁻³⁴ J·s)²) * (38.0 × 10⁻⁹ m))

Calculating this expression gives us:

L ≈ 76.0 nm

The side length L of the three-dimensional cubical box is approximately 76.0 nm.

To know more about Wavelength visit:

https://brainly.com/question/10750459
#SPJ11

Please help!
The Moon itself does not produce light. It appears to be lit because it is _____________ light from the Sun. *


A)absorbing

B)Reflecting

C)capturing

D)stealing

Answers

Answer:

it's b the moon reflect light from the sun

मारवतन गनुहास (What Is MKS Syste
Convert 5 solar days into second.)​

Answers

Answer:

5 Days to Seconds = 432000

Explanation:

A spring is hanging from the ceiling. Attaching a 450g physics book to the spring causes it to stretch 18cm in order to come to equilibrium.
a. What is the spring constant?
b. From equilibrium, the book is pulled down 10 cm and released. What is the period of oscillation?
c. What is the book's maximum speed?

Answers

The spring constant is 24.75 N/m. The period of oscillation is approximately 0.902 seconds. The book's maximum speed is approximately 0.606 m/s.

a. The spring constant can be calculated using Hooke's Law:

F = k * x

where F is the force applied to the spring, k is the spring constant, and x is the displacement.

Given that the mass of the book is 450 g and the spring stretches by 18 cm, we need to convert the mass to kilograms and the displacement to meters:

m = 450 g

= 0.45 kg

x = 18 cm

= 0.18 m

Using Hooke's Law, we can solve for the spring constant:

k = F / x

= (m * g) / x

where g is the acceleration due to gravity.

Substituting the values:

k = (0.45 kg * 9.8 m/s^2) / 0.18 m

= 24.75 N/m

Therefore, the spring constant is 24.75 N/m.

b. The period of oscillation for a mass-spring system is given by:

T = 2π * √(m / k)

where T is the period, m is the mass, and k is the spring constant.

Substituting the values:

T = 2π * √(0.45 kg / 24.75 N/m)

≈ 0.902 s

Therefore, the period of oscillation is approximately 0.902 seconds.

c. The maximum speed of the book can be determined using the formula:

v_max = A * ω

where v_max is the maximum speed, A is the amplitude (0.10 m, which is 10 cm), and ω is the angular frequency.

The angular frequency can be calculated using:

ω = √(k / m)

Substituting the values:

ω = √(24.75 N/m / 0.45 kg)

≈ 6.06 rad/s

Now, we can calculate the maximum speed:

v_max = 0.10 m * 6.06 rad/s

≈ 0.606 m/s

Therefore, the book's maximum speed is approximately 0.606 m/s.

a. The spring constant is 24.75 N/m.

b. The period of oscillation is approximately 0.902 seconds.

c. The book's maximum speed is approximately 0.606 m/s.

To know more about Spring constant visit:

https://brainly.com/question/23885190

#SPJ11

A hungry fish is about to have lunch at the speeds shown. Assume the hungry fish has a mass 5 times that of the small fish.

(a) Immediately after lunch, for each case, rank from greatest to least the speed of the formerly hungry fish

Answers

After eating, the ranking of the speeds of the formerly hungry fish is as follows: 24 m/s > 18 m/s > 12 m/s > 6 m/s. The speed of the larger fish after eating is [tex]v_L = \frac{v_S }{6}[/tex].

The speed of a fish may vary depending on various factors such as age, size, species, temperature, etc. When we talk about the speed of a fish, we usually refer to the maximum speed a fish can swim. In this question, we have a hungry fish about to have lunch at different speeds. Let's assume that the mass of the hungry fish is five times that of the small fish.

(a) Immediately after lunch, for each case, rank from greatest to least the speed of the formerly hungry fish: The momentum of both fish should be conserved before and after lunch. Therefore, we can use the following formula to find the speed of the larger fish before eating:

[tex]v_L = (m_S * v_S) / m_L[/tex]

where [tex]m_S[/tex] is the mass of the small fish, [tex]v_S[/tex] is the speed of the small fish, mL is the mass of the large fish, and [tex]v_L[/tex] is the speed of the large fish. The masses of both fish are given as 5[tex]m_S[/tex] and [tex]m_S[/tex]. The small fish is moving at speed [tex]v_S[/tex] before it is eaten. Therefore, the momentum of the small fish before eating is [tex]m_S[/tex] [tex]v_S[/tex]. The momentum of the large fish after eating is [tex](5m_S + m_S) * v[/tex].

Therefore, the momentum of the large fish before eating is also [tex]m_S[/tex] [tex]v_S[/tex]. As a result,

[tex]m_Sv_S = (5m_S + m_S) * v_L \\[/tex]

[tex]=v_L = (m_Sv_S )/ 6m_S = v_S[/tex]

Therefore, the speed of the large fish after eating is [tex]v_L = \frac{v_S }{6}[/tex].

Let's compare the given speeds: 6 m/s, 12 m/s, 18 m/s, 24 m/s. After eating, the large fish will move at a speed equal to one-sixth of the small fish's speed.

As a result, their speeds will be as follows: 6 m/s → 1 m/s12 m/s → 2 m/s → 18 m/s → 3 m/s → 24 m/s → 4 m/s. Therefore, the ranking of the speeds of the formerly hungry fish is as follows: 24 m/s > 18 m/s > 12 m/s > 6 m/s.

To know more about speed visit:

https://brainly.com/question/17661499

#SPJ11

Other Questions
Discribe blood cells and give their proper function. what makes difference on red blood cells to other types of cells of human? use calculus to find the volume of the following solid s: the base of s is the triangular region with vertices (0, 0), (3, 0), and (0, 2). cross-sections perpendicular to the y-axis are semicircles. Trey Morgan is an employee who is paid monthly. For the month of January of the current year, he earned a total of $5,640. The Federal Insurance Contributions Act (FICA) tax for social security is 6.2 in a group of 62 students; 27 are normal, 13 are abnormal, and 32 are normal abnormal. find the probability that a student picked from this group at random is either a normal or abnormal? The total cost (in dollars) of manufacturing x auto body frames is C(x)=50,000+400x (A) Find the average cost per unit if 400 frames are produced (B) Find the marginal average cost at a production level of 400 units. (C) Use the results from parts (A) and (B) to estimate the average cost per frame if 401 frames are produced Which words describe Yoshiko's relationship with her stepmother? Use the following returns for X and Y.ReturnsYearXY122.1 %27.3 %217.14.1310.129.3420.215.255.133.31. Calculate the average returns for X and Y. (Do not round intermediate calculations and enter your answers as a percent rounded to 2 decimal places, e.g., 32.16.)2. Calculate the variances for X and Y. (Do not round intermediate calculations and round your answers to 6 decimal places, e.g., 32.161616.)3. Calculate the standard deviations for X and Y. (Do not round intermediate calculations and enter your answers as a percent rounded to 2 decimal places, e.g., 32.16.) help me all jokes aside plz what number that you can multiple by 7 that will give you 7/10 Unimart Precision ManufacturingBeginning inventory Merchandise $275,000 Finished goods $450,000 Cost of purchases 500,000 Cost of goods manufactured 900,000 Ending inventory Merchandise 115,000 Finished goods 375,000 Required:Compute cost of goods sold for each of these two companies for the year. A rectangular sandbox will be constructed for the students at an elementary school. The sandbox will be filled to the top of the sandbox with sand. If each bag of sand contains 2.6 cubic feet of sand, how many bags of sand will need to be purchased to completely fill the sandbox. Solve for X: x/5 - 7 = 2Please give the correct answer. Thank You! For each policy action, indicate how the following will be impacted. For the budget, identify if the action moves the budget towards surplus' or 'towards defici. Aggregate Real Price National Policy Budget Demand GDP Level Debt Automatic stabilizers in a 1. recessionary gap Automatic stabilizers in an 2. inflationary gap Tax cuts and government 3. spending increases Government spending cuts and 4. tax increases Bob mixed 5/8 cup of water and 1/8 cup of lemon juice in a cup. The rest of the mixture was lime juice. How much lime juice did Bob add if the cup was full? What is the significance of cdk/cyclin interactions with respect to cancer cell proliferation? how to graph an inequality y Easy question Ill give extra points. Help plz help give brainleist need answers 2 and 3 Help me pleaseeeee would be really appreciated